W

Also available as ) Book

#l

Mc
Graw
Hill

Education

ks v
Scanned by CamScanne




]

Mankind has always strived to give life-like qualities to its artifacts in an
attempt to find substitutes for himself to carry out his orders and also to
work in a hostile environment. The popular concept of a robot is of a machine that
looks and works like a human being. This humanoid concept has been inspired by
science fiction stories and films in the twentieth century. The industrial robots of
today may not look the least bit like a human being although all the research is
directed to provide more and more anthropomorphic and human-like features and
super-human capabilities in these. '

To sum up, machines that can replace human beings as regards to physical
work and decision making are categorized as robots and their study as robotics.

The robot technology is advancing rapidly. The industry is moving from the-
current state of automation to robotization, to increase productivity and to deliver
uniform quality. Robots and robot-like manipulators are now commonly
employed in hosiile environment, such as at various places in an atomic plant for
handling radioactive materials. Robots are being employed to construct and repair
space stations and satellites. There are now increasing number of applications of
robots such as in nursing and aiding a patient. Microrobois are being designed to
do damage control inside human veins. Robot like systerns are now employed in
heavy earth-moving equipment. It is not possible to put up an exhaustive list of
robot applications. One type of robot commonly used in the industry is a robotic
manipulator or simply a manipulator or a robotic arm. It is an open or closed
kinematic chain of rigid links interconnected by movable joints. In some
configurations, links can be considered to correspond to human anatomy as waist,
upper arm, and forearm with joints at shoulder and elbow. At the end of the arm,
a wrist joint connects an end-effector to the forearm. The end-effector may be a
tool and its fixture or a gripper or any other device to do the work. The end-
effector is similar to the human hand with or without fingers. A robotic arm, as
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described above, is shown in Fig. 1.1, where various joint movements are also
indicated.
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Fig. 1.1 An industrigl robot that least looks like a hu}r’mn
1.1 - EVOLUTION OF ROBOTS AND ROBOTICS
Czech writer, Karel Capek, in his drama, introduced the word robot to the world
in 1921. It is derived from Czech word robota meaning “forced labourer”. Isaac
Asimov the well-known Russian science fiction writer, coined the word rebotics
in his story _“Runéro_und", published in 1942, to denote the science devoted to
study of robots. -

The antecedents of the modern reprogrammable automation dates back to the
eighteenth century. Perhaps, the best record is of Joseph Jacquard’s use of
punched cards in mechanical looms, which laid the foundations for NC, CNC,
and automats, in addition to robotics. | y

Numerical control (NC) works on control actions based on stored information
that may include start and stop operations, coordinate points, actions, lOgIC for
branching, and control sequences. A manufacturing system producing a vanety‘of
products in small batches, without requiring major hardware changesl, }‘{“h
frequent changes in product models and production schedules, requires flexibility.

In the transfer line approach, raw material is automatically transferred from one
[ ' '

I
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Introduction to Robotics

machine to another till it is converted to the final preduct. Such a transfer line
approach, producing a large quantity of the same product for an extended period , -
of time, may become useless when a major product change is required. It often
ends up in abandoning the large capital investment. Contemporary. industrial
robots are reprogrammable machines that can perform different operations by
simply modifying stored data, a feature that evolved from numerical control and
is a solution for both of the above situations. : 3
Need of systems to work in hostile environments that human workers cannot
easily or safely access (for example radioactive material handling) led to the.
development of teleoperated manipulator in 1940s. The field of “telecherics”
. deals with the use of remote manipulators controlled by a human being in a
“master-slave” configuration. Here, the actual machine (slave) is operated from a

distance by a control “joystick” of a geometrically similar machine (master), as
shown in Fig. 1.2,

Wall
(shield)

B 7
\V4 2 Hazardous

i environment

Operator

A A o

Master KX

Fig. 1.2 A master-slave manipulator

The combination of numerical control and telecherics have evolved the basic
concepts of modern industrial robots with human operator and master manipulator
of Fig. 1.2 replaced by a programmable controller. This merging created a new
field of engineering referred to as robotics, and with it a number of engineering
and scientific issues in design, control, and programming have emerged, which
are substantially different from those of the existing techniques. :

Some of the landmark developments in the field are now enunciated. In 1938—
1939, ajointed mechanical armwas invented for use in spray painting. A process
controller that could be used as a general-purpose playback device for operating
machines, was developed in 1946, the year in which first large-scale electronic
computer ENIAC was built. The first numerically controlled machine tool was
developed in 1952. The patenting of the first manipulator, with the basic concept
of teaching/playback, in 1954, set rolling the exponential growth in robotics.

The unmatched quality, reliability, and productivity offered by these robots,
although in very limited applications, was recognized by the industry and sparked
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the formation of several world-wide centres of research in this area by the tig 1
1960s. The newfield of robotics received support from simultanegusl~ :
developing fields of ' artificial intelligence (Al), artificial® vision

developments in digital microcomputers. In 1967-1968, the first leggc,d :nd
wheeled walking machines using vision and other sensors, were reported T? =
servomotors were used in place of hydraulic devices in 1970 to power the r(:;bmle.
In 1974, the first servomotor actuated and microcomputer-controlled robots Wes.
commercially launched and in 1976, they were used by NASA Viking lander :e
collect samples from the surface of Mars. An elementary sketch of this lander i(;

drawn in Fig. 1.3.

Fig. 1.3 Sketch of a mobile robot, the kind used as Viking lander

The decade following 1975 saw the largest worldwide growth of university-
based laboratories, research centres, curricula, and publications in robotics.
Mobile robotics also grew substantially during this period with designs of legged
vehicles based on gait of both human beings and insects. The research activity in
robotics started almost 40 years ago. The Robotic Institute of America (RIA),
now called Robotic Industries Association (RIA), was formed only in 1975 asan
organization of robot manufacturers and users. :

The growth, thereafter, in robotics has been closely associated with
developments in microcomputers, micro-controllers, sensor technology. vision
technology, and artificial intelligence. The year 1997 saw the amalgamation of
all these in the success of the Mars mission through “Pathfinder” and
“Sojourner”. '

Recent Japanese exhibition Robodex 2000 exhibited several varieties of
entertainment robots; but there were no robots which could effectively do the
onerous chores of house cleaning and dishwashing. Such robots are yet to be
designed. Nciie o1 tre varieties exhibited attracted the industry. :

~ Industrial robots are increasingly used in manufacturing plants, medical
surgery, and rescue :fforts. These require more difticult technology as much

S S e Ty el
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higher degree of accuracy, repeatability, flexibility, and reliability is needed for
industrial robots, _ A g s

Ro.bot.m% today is dealing with research and development in a number of
intﬂr_dlSCIleaW areas, including kinematics, dynamics, control, motion planning,
sensing, programming, and machine intelligence. These topics are introduced in
the following sections and constitute the core of material in this book.

1.2 LAWS OF ROBOTICS

Issac Asimov conceived the robots as humanoids, devoid of feelings, and used
them in a 1:1umbcr of stories. His robots were well-designed, fail-safe machines,
whose brains were programmed by human beings. Anticipating the dangers and
havoc such a device could cause, he postulated rules for their ethical conduct.
Robots were required to perform according to three principles known as “three
laws of Robotics™, which are as valid for real robots as they were for Asimov’s
robots, and they are: : :
1. A robot should not injure a human being or, through inaction, allow a
human to be harmed. -
2. A robot must obey orders given by humans except when that conflicts with
the First Law. .. il y
3. A robot must protect its own existence unless that conflicts with the First
or Second Law. , :
These are very general laws and apply even to other machines and appliances.
They are always taken care of in any robot design. |

1.3 WHAT IS AND WHAT IS NOT A ROBOT

Automation as a technology is concerned with the use of mechanical, electrical,
electronic, and computer-based control systems to replace human beings with
machines, not only for physical work but also for the intelligent information
processing. Industrial automnation, which started in the eighteenth century as fixed
automation has transformed into flexible and programmable automation in the
last 15 or 20 years. Computer Numerically Controlled (CNC) machine tools,
transfer, and assembly lines are some examples in this category.

Common people are easily influenced by science fiction and thus, imagine a
robot as a humanoid that can walk, see, hear, speak, and do the desired work. But
the scientific interpretation of science fiction scenario propounds a robot as an
automatic machine that is able to interact with and modify the environment in
which it operates. Therefore, it is essential to define what constitutes a robot.
Different definitions from diverse sources are available for a robot.

Japan is the world leader in robotics development and robot use. Japan
Industrial Robot Association (JIRA) and the Japanese Industrial Standards
Commiiice defines the industrial robot at various levels as:

L S e g |

“Menipulator: a machine that has functions similar to human upper limbs,.
and moves the objects spatially.
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Playback robot: a manipulator that is ab}e to cﬁif:gegzezﬁzrﬁ?" b
reading off the memorized information for an oper - » Which jo
learned beforehand. e 8 : |

 Intelligent robot: a robot that can determin€ its OWN behaviour and _C"“dum .
through its functions of sense and recognition. _ fa
The British Robot Association (BRA) has defined the industrial robot 4,
“A reprogrammable device with minimum of  four delgrees o fr?cqom
designed to both manipulate and transport parts, tools, gr Spe_cmllzed i
manufacturing implements through var1al?}8 Pfogm'ﬁme motions for .
performance of specific manufacturing task.

The Robotics Industries Associati:on (RIA) of USA defines the robot ag;

“A reprogrammable, multifunctional manipulator designed to moye -

material through variable programmed motions.for the performance of ,

variety of tasks.” S ¥

The definition adopted by International Standards Organization (ISO) gng
agreed upon by most of the users and manufacturers is:

“An. industrial robot is an ‘automatic, servo-controlled; freely

programmable, multipurpose manipulator, with several areas, for the
- handling of work pieces, tools, or special devices. Variably programmeq

operations make the execution of a multiplicity of tasks possible.”

Despite the fact that a wide spectrum of definitions exist, none covers the
features of a robot exhaustively. The RIA definition lays emphasis op
programmability, whereas while the BRA qualifies minimum degrees of freedom,
The JIRA definition is fragmented. Because of all this, there is still confusion i
distinguishing a robot from automation and in describing functions of a robot. To
distinguish between a robot and automation, following guidelines can be used.

For a machine to be called a robot, it must be able to respond to stimuli-based
on the information received from the environment. The robot must interpret the
stimuli either passively or through active sensing to bring about the changes
required in its environment. The decision-making, performance of tasks and so

on, all are done as defined in the programs taught to the robot. The functions of a
robot can be classified into three areas:

“Sensing” the environment by external sensors, for example, vision, voice,

touch, proximity and so on, “decision-making” based on the information received
from the sensors, and “performing” the task decided.

14 PROGRESSIVE ADVANCEMENT IN ROBOTS

The growth in the capabilities of robots has been taking rapid strides since the
introduction of robots in the industry in early 1960s,
1o go to obtain the super-humanoid anthr
The growth of robots

but there is still a long way
Opomorphic robot depicted in fiction.
can be grouped into robor generations, based on
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‘characteristic breakthroughs in fobot’s capabilities. These
overlapping and'include futuristic projections. * ** "
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1.4.1 First Generation

Thf: ﬁr§t generation robots are repeating, nonservo;pick-and-place, or'point-to-
‘point _k_mc_l-l T_l_lf} nghnolpgly for these is fully developed and at present about 80%
robots in use in the industry are of this kind. It is predicted that these will continue
to be in use for a long time. i il crhod ornind ) G earti6ai e (st R
142 ' Second Generation rte ey wili s St Y sk
:The addition of sensing devices and enabling the robot to alter its movements in
-response to sensuary feedback marked the-beginning of second generation. These
‘robots exhibit-path-control capabilities. This technological breakthrough came
;around 1980s and is yet:not mature.: v« it e [ a0t ol At v sl e
HERRIRCRE L T Bt el - - 1 1o frinttp anRr g

1.4.3 Third Genera.tioﬁ- W -I

The third generation is marked with robots having human-like intelligence. The
growth in computers led to high-speed processing of information and, thus, robots
also acquired .artificialintelligence, self-learning, and conclusion-drawing
capabilities by past experiences. On-liné computations and control, artificial
vision, and active force/torque interaction with the environment are the significant
characteristics of these robots. The technology is still in infancy and has to go a
long way. Rk

. SecondGeneraion .

i ’ g }Firstﬁenerahon ‘ °\l

I ity A | | iz 3
1960 1970 1980 1990 2000 2010 2020

Fig. 1.4 The four generations of robots

1.4.4 Fourth Generation

This is futuristic and may be a reality only during this millennium. Prediction
about its features is difficult, if not impossible. It may be a true android or an
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artificial biological robot or a super humanoid capable of producing its own
clones. This might provide for fifth and higher generation robots. _
A pictorial visualization of these overlapping generations of robots is given in

Fig. 1.4.
1.5 ROBOT ANATOMY

As mentioned in the introduction to the chapter, the manipulator or robotic arm
has many similarities to the human body. The mechanical structure of a robot is
like the skeleton in the human body. The robot anatomy is, therefore, the study of
skeleton of robot, that s, the physical construction of the manipulator structure.

The mechanical structure of a manipulator that consists of rigid bodies (links)
connected by means of articulations (joints), is segmented into an arm that
ensures mobility and reachability, a wrist that confers orientation, and an end-
effector that performs the required task. Most manipulators are mounted on a
base fastened to the floor or on the mobile platform of an autonomous guided
vehicle (AGV). The arrangement of base, arm, wrist, and end-effector is shown
in Fig. 1.5. '

End-effector

Workpiece

Base

7 X
Fig. 1.5  The base, arm, wrist, and end-effector forming the mechanical
structure of a manipulator

1.5.1 Links |

The mechanical structure of a robotic manipulator is a mechanism, whqse |
members are rigid links or bars. A rigid link that can be connected, at most, with
two other links is referred to as a binary link. Figure 1.6 shows two rigid binary
links, 1 and 2, each with two holes at the ends A, B, and C, D, respectively t0
connect with each other or to other links.

Two links are connected together by a joint. By putting a pin through holes B
and C of links 1 and 2, an open kinematic chain is formed as shown in Fig. 1.7:
The joint formed is called a pin joint also known as a revolute or rotary joint. -
Relative rotary motion between the links is possible and the two links are saidto
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Fig. 1.6 Two rigid binary links in free space

——

be paired. In Fig. 1.7 links are represented by straight lines and rotary joint by a
small circle.

A Joint

-
-

Fig. 1.7 An open kinematic chain formed by joining two links

1.5.2 Joints and Joint Notation Scheme

Many types of joints can be made between two links. However, only two basic
types are commonly used in industrial robots. These are
e Revolute (R) and :
e Prismatic (P).
The relative motion of the adjoining links of a joint is either rotary or linear
depending on the type of joint.
Revolute joint: It is sketched in Fig. 1.8(a). The two links are jointed by a pin
(pivot) about the axis of which the links can rotate with respect to each other.
Prismatic joint: It is sketched in Fig. 1.8(b). The two links are so jointed that
these can slide (linearly move) with respect to each other. Screw and nut (slow
linear motion of the nut), rack and pinon are ways to implement prismatic joints.
Other types of possible joints used are: planar (one surface sliding over another
surface); cylindrical (one link rotates about the other at 90° angle, Fig. 1.8(¢c));
and spherical (one link can move with respect to the other in three dimensions).
Yet another variant of rotary joint is the ‘twist’ joint, where two links remain
aligned along a straight line but one turns (twists) about the other around the link
axis, Fig. 1.8(d).
At a joint, links are connected such that they can be made to move relative to
each other by the actuators. A rotary joint allows a pure rotation of one link
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Fig. 1.8 Joint types and their synbols

relative to the connecting link z;nd-p‘r'i'sma
link relative to the connecting link. !
The kinematic chain formed by joining two links is extended by connecting

more links. To form a manipulator, one end of the chain is connected to the base
or ground with a joint. Such a manipulator is an open kinematic chain. The end-
effector is connected to the free end of the last link, as illustrated in Fig. 1.5.,
Closed kinematic chains are used in special: purpose: manipulators,’such as
parallel manipulators, to create certain kind of motion of the end-effector.

" The kinematic chain' of thie manipulator is characterized by the degrees of
freedom it has, and the space its end-effector can sweep. These parameters are
discussed in next sections. 2 P

tic joint allows a pure translation of one

1.5.3 Degrees of Freedom (DOF)

The number of independent movements that an object can perform in a 3-D space

is called the number of degrees of freedom (DOF). Thus, a rigid body free in

space has six degrees of freedom—three for position and three for orientation.
These six independent movements pictured in Fig. 1.9 are:

(i) three translations (T}, T, T3), representing linear motions along three

perpendicular axes, specify the position of the body in space.
(i) three rotations (R,, R,, R3), which represent angular motions about the
' three axes, specify the orientation of the body in space. :
Note from the above that six independent variables are required to specify the:
location (position and orientation) of an object in 3-D space, that is, 2 X3 = 6.

Nevertheless, in a 2-D space (a plane), an object has 3-DOF—two translatory “

.and one rotational. For instance, link 1 and link 2 in Fig. 1.6 have 3-DOF each.

Consider an open kinematic chain of two links with revolute joints at A and B 5

(or C), as shown in Fig. 1.10. Here, the first link is connected to the ground by 8 3
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AN
Ground

Fig. 1.10 A two-DOF pfanar'mn}r.r'pulator—two links, two joints

joint at A. Therefore, link 1 can only rotate about joint 1 (J,) with respect to
ground and contributes one independent variable (an angle), or in other words, it
contributes one degree of freedom. Link 2 can rotate about joint 2 (J,) with
respect to link 1, contributing another independent variable and so another DOF.
Thus, by induction, conclude that an open kinematic chain with one end connected
to the ground by a joint and the farther end of the last link free, has as
degrees of freedom as the number of joints in the chain. It is assumed tha
joint has only one DOF. . . _
The DOF is also equal to the number of links in the open Kinematic chain. For
example, in Fig. 1.10, the open kinematic chain manipulator with two DOF has
two links and two joints.
The variable defining the motion of a link at a joint is called a joint-link
variable. Thus, for an n-DOF manipulator n independent joint-link variables are
required to completely specify the location (position and orieitation) of each link

(and joint), specifying the location of the end-effector in space. Thus, for the two-
link, in turn 2-DOF manipulator, in Fi

location of end-point, point D.

many
t each

g. 1.10, two variables are required to define
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1.5.4 Reéuired DOF in a Manipulator

T — i body freely iy 4 .
. " 3 that to position and orlentzf s § Yin3g
It is. concluded from Section 1.5.3 th 4. Siich &:manipulstor 5 Calledh |

A — : is require

space, a manipulator with 6 DOF 1s S " : 1
o ree : :

spatial manipulator. It has three joints for positioning and tar Ofienting . =
end-effector.

A manipulator with less than 6-DOF has constrained motion in 3-p Space, :

There are situations where five or even four joints (DOF) are e““‘{Eh 0 do the
required job. There are many industrial manip'ulﬂt.ors that have five or fewe,
DOF. These are useful for specific applications that do not Tequire
6-DOF. A planar manipulator can only sweep & 2-D space or a p?ane and cgy
have any number of degrees of freedom. For example, a planar m_anlpullamr With
three joints (3-DOF)— may be two for positioning and one for orientation —can
only sweep a plane. .

Spatial manipulators with more than 6-DOF have surplus joints and are knoyy
as redundant manipulators. The extra DOF may enhance the performance by
adding to its dexterity. Dexterity implies that the manipulator can reach ;
subspace, which is obstructed by objects, by the capability of going around these,
However, redundant manipulators present complexities in modelling and
coordinate frame transformations and therefore in their programming and control,

The DOF of a manipulator are distributed into subassemblies of arm and wrist, ]
The arm is used for positioning the end-effector in space and, hence, the three
positional DOF, as seen in Fig. 1.9, are provided to the arm. The remaining
3-DOF are provided in the wrist, whose task is to orient the end-effector. The
type and arrangement of joints in the arm and wrist can vary considerably. These
are discussed in the next section.

L I

1.5.5 Arm Configuration

The mechanics of the arm with 3-DOF depends on the type of three joints
employed and their arrangement. The purpose of the arm is to position the wristin
the 3-D space and the arm has following characteristic requirements.
* Links are long enough to provide for maximum reach in the space. ... 8
‘¢ The design is mechanically robust because the arm has to bear not only thé
load of workpiece but also has to carry the wrist and the end-effector. =
_According to joint movements and arrangement of links, four welk
distinguished basic structural configurations are possible for the arm. These &€ =
t':hlaracterized by the distribution of three arm joints among prismatic and rotary
Joints, and are named according to the coordinate system employed or the shape J
of the space they sweep. The four basic configurations are:.
(1) Cartesian (rectangular) configuration - all three P joints
(i) Cylindrical configuration — one R and two P joints :
(ilii) Polar (spherical) configuration — two R and one Pj:oint :
(iv) Articulated (Revolute or Jointed-arm) Configuration —.all three R joif' -

e e e it it v o
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Each of these arm configurations is now discussed briefly.

(i)Cartesian (Rectangular) Configuration This is the simplest configuration
with all three prismatic joints, as shown in Fig. 1.11. It is constructed by three
perpendicular slides, giving only linear motions along the three principal axes.
There Is an upper and lower limit for movement of each link. Consequently, the
endpoint of the arm is capable of operating in a cuboidal space, called workspace.

T?}e workspace represents the portion of space around the base of the
manipulator that can be accessed by the arm endpoint. The shape and size of the
wor!(space depends on the arm configuration, structure, degrees of freedom, size
of l““kss and design of joints. The physical space that can be swept by a
manlp}llater (with wrist and end-effector) may be more or less than the arm
endpoint workspace. The volume of the space swept is called work volume; the
surface of the workspace describes the work envelope.

- Fig. 1.11 A 3-DOF Cartesian arm configuration and its workspace

The workspace of Cartesian configuration is cuboidal and is shown in
Fig. 1.11. Two types of constructions are possible for Cartesian arm: a
Cantilevered Cartesian, as in Fig. 1.11, and a Gantry or box Cartesian. The
latter one has the appearance of a gantry-type crane and is shown in Fig. 1.12.-
Despite the fact that Cartesian arm gives high precision and is easy to program, it
is not preferred for many applications due to limited manipulatability. Gantry
configuration is used when heavy loads must be precisely moved. The Cartesian
configuration gives large work volume but has a low dexterity.
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Fig. 1.12 Gantry or box configuration Cartesian manipulator

(ii) Cylindrical Configuration The cylindrical configuration pictured in
Fig. 1.13, uses two perpendicular prismatic joints, and a revolute joint. The
difference from the Cartesian one is that one of the prismatic joint is replaced
with a revolute joint. One typical construction is with the first joint as revolute.
The rotary joint may either have the column rotating or a block revolving around
a stationary vertical cylindrical column. The vertical column carries a slide that
can be moved up or down along the column. The horizontal link is attached to the
slide such that it can move linearly, in or out, with respect to the column. This
results in a RPP configuration. The arm endpoint is, thus, capable of sweepinga
cylindrical space. To be precise, the workspace is a hollow cylinder as shown in
Fig. 1.13. Usually a full 360° rotation of the vertical column is not permitted due
to mechanical restrictions imposed by actuators and transmission elements.

T : ___31 T—
e =
IK‘H'“'.'--.__ ] _-;E -__> (2 WorkSpace
i: e S [ I
i
|
!
g

Fig. 113 A 3-DOF cylindrical arm configuration and its workspace

b b s vl
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M.any other joint drrangements with two prismatic and-one rotary joint are
ppsmbip G Y lin-drica'-.Conﬁgl!rutiori. for example, a PRP configuration. Note
tl?at alll‘f.:ombmations of 1R and 2P are not useful conﬁguralidﬂs as they may -
give suitable workspace and some may only sweep a plane, Such conﬁguratioﬁs
are called nonrobatic configurations. It is left for the, reader to visualize as to
which jpinf,co;_nbinutiuns are robotic.arm Configufatioﬁs, b i |

. The cylindrical configuration offers good mechanical stiffness and the wrist
positioning accuracy decreases as the horizontal stroke increases. Itis suitable to
_apccss_ narrow horizontal cavities and, .hencé', is,useful'for'ﬁ}achineFIoading
operations. Sl 10adi

(i'ii )Polqr (Spherical) Configuration The polar configiiration is illustrated’in
Fig. 1.14. Tt consists of a'telescopic link (prismatic joint) that can be’raised or
lowér'ed about a horizontal revolute joint. These two links are’mounted on a
ro'tatu:tg Base. This arrangement of joints, known d@s RRP configuration, gives the
capability of moving the arm end-point within a partial spherical shell space as
work volume, as shown in Fig. 1.14.

Fig. 1.14 A 3-DOF polar arm configuration and its workspace

This configuration allows manipulation of objects on the floor because its
shoulder joint allows its end-effector to go below the base. Its mechanical
stiffness is lower than Cartesian and cylindrical configurations and the wrist
positioning accuracy decreases with the increasing radial stroke. The constmction
is more complex. Polar arms are mainly employed for industrial applications such
as machining, spray painting and so on. Alternate polar configuration can be
obtained with other joint arrangements such as RPR, but PRR will not give a

spherical work volume.
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(iv) Articulated (Revolute or Jointed-arm) Cﬂ”ﬁg“mit“m Thc. articulagey
arm is the type that best simulates a human arm and a manipulator with th;s type
of an arm is often referred as an anthropomorphic manipulator. It consjgg of
two straight links, corresponding to the human *“forearm” anc!“juppcr arm” wig,
two rotary joints corresponding to the “elbow” and “shm.lldel' Joints. These ty,
links are mounted on a vertical rotary table corresponding to the human Waist
joint. Figure 1.15 illustrates the joint-link arrangement for the articulated arm,
This configuration (RRR) is also called revolute because three revolute joints
are employed. The work volume of this configuration is spherical shaped, and
with proper sizing of links and design of joints, the arm endpoint can sweep 5 full
spherical space. The arm endpoint can reach the base point and below the base, 5
shown in Fig. 1.15. This anthropomorphic structure is the most dexteroug One,
~ because all the joints are revolute, and the positioning accuracy varies with arp
endpoint location in the workspace. The range of industrial applications of thjs
arm is wide.

Fig. 1.15 A 3-DOF articulated arm configuration and its workspace

(v) Other Configurations New arm configurations can be obtained by
assembling the links and joints differently, resulting in properties different from
those of basic arm configurations outlined above. For instance, if the
characteristics of articulated and cylindrical configurations are combined, the
result will be another type of manipulator with revolute motions, confined to the
horizontal plane. Such a coniiguration is called SCARA, which stands for
Selective Compliance Assembly Robot Arm,

The SCARA configuration has vertical major axis rotations such that
gravitational load, Coriolis, and centrifugal forces do not stress the structure a3
much as they would if the axes wers horizoiial, This advantage is very important

Ut et s s et s 8
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at high ﬁpccds an(_i high precision. This configuration provides high stiffness to
the armin the vertical direction, and high compliance in the horizontal plane, thus

making SCARA congenial for many assembly tasks. The SCARA configuration
and its workspace are presented pictorially in Fig. 1.16.

S
= — Workspace

Fig. 1.16 The SCARA configuration and its workspace

1.5.6 Wrist Configuration

The arm configurations discussed above carry and position the wrist, which is the
second part of a manipulator that is attached to the endpoint of the arm. The wrist
subassembly movements enable the manipulator to orient the end-effector to
perform the task properly, for example, the gripper (an end-effector) must be
oriented at an appropriate angle to pick and grasp a workpiece. For arbitrary
orientation in 3-D space, the wrist must possess at least 3-DOF to give three
rotations about the three principal axes. Fewer than 3-DOF may be used in a
wrist, depending on requirements. The wrist has to be compact and it must not
diminish the performance of the arm.

The wrist requires only rotary joints because its sole purpose is to orient the
.end-effector. A 3-DOF wrist permitting rotation about three perpendicular axes
provides for roll (motion in a plane perpendicular to the end of the arm), pitch
(motion in vertical plane passing through the arm), and yaw (motion in a
horizontal plane that also passes through the arm) motions. This type of w_'rist is
called roll-pitch-yaw or RPY wrist and is illustrated in Fig. 1.17. A wrist with ttEe
highest dexterity is one where three rotary joint axes intersect at a point. This
complicates the mechanical design.
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Fig. 1.17 A 3-DOF RPY wrist with three revolute joints

1.5.7 The End-effector

The end-effector is external to the manipulator and its DOF do not combipe With
the manipulator’s DOF, as they do not contribute to manipulatability. Differeqt
end-effectors can be attached to the end of the wrist according to the task to} i
executed. These can be grouped into two major categories:
1. Grippers
2. Tools

Grippers are end-effectors to grasp or hold the workpiece during the work j_
cycle. The applications include material handling, machine loading-unloading, 1
palletizing, and other similar operations. Grippers employ mechanical grasping -
or other alternative ways such as magnetic, vacuum, bellows, or others for
holding objects. The proper shape and size of the gripper and the method of :
holding are determined by the object to be grasped and the task to be performed. -
Some typical mechanical grippers are shown in Fig. 1.18. ,;

- For many tasks to be performed by the manipulator, the end-effector is a ool
rather than a gripper. For example, a cutting tool, a drill, a welding torch, aspray |

Fig. 1.18  Some fingered grippers for holding different types of jobs
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gun, or a screwdriver is the end-effector for machining, welding, painting, or
assembly task, moupted at the wrist endpoint, The tool is usually directly attached
to the end of the wrist. Sometimes, a gripper may be used to hold the tool instead

of thfa workpiece. Tool changer devices can also be attached to the wrist end for
multi-tool operations in a work cycle.

1.6 HUMAN ARM CHARACTERISTICS

The industrial robot, though not similar to human arm, draws inspiration for its
capabilities from the latter. The human arm and its capabilities make the human
race class apart from other animals. The design of the human arm structure isa
unique marvel and is still a challenge to replicate. Certain characteristics of the
human arm are a far cry for today’s manipulators. It is, therefore, worth
considering briefly, human arm’s most important characteristics as these serve as i
a benchmark for the manipulators.
The human arm’s basic performance specifications are defined from the zero
reference position, which is the stretched right arm and hand straight out and
horizontal with the palm in downward direction. The three motions to orient the
hand, which is the first part of human arm, are approximately in the following
range.
—-180° < Roll £ +90°
-90° £ Pitch £ +50°
—45° < Yaw < +15°

Note that to provide the roll motion to the hand, forearm, and the upper-arm,
both undergo a twist, while pitch and yaw are provided by the wrist joint. The
second part of the human arm consists of upper arm and forearm with shoulder
and elbow joints. It has 2-DOF in the shoulder with a ball and socket joint,
1-DOF in the elbow between forearm and upper-arm, with two bones in the
forearm and one in upper arm. The 2-DOF shoulder joint provides an
approximately hemispherical sweep to the elbow joint. The elbow joint moves the
forearm by approximately 170° (from —5° to 165°) in different planes, depending
on the orientation of two forearm bones and the elbow joint. For the zero reference
position defined above, the forearm and the wrist can only sweep an arc in the
horizontal plane. j

Another important feature of the human arm is the ratio of the length of the
upper arm to that of the forearm, which is around 1.2. Any ratio other than this
results in performance impairment. A mechanical structure identical to the human
arm, with 2-DOF shoulder joint, three-bones elbow joint, eight-bones wrist joint
with complicated geometry of each bone and joint, is yet to be designed and
constructed. The technology has to go a long way to replicate human arm’s bone
shapes, joint mechanisms, mechanism to power and move joints, motion control, -
safety, and above all, self repair.
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The human hand, at the end of arm, witHiair HREA a:(:ha thll;n'ﬂ::, Sy
4-DOF, is another marvel with no parallel. The il?ﬁfr;la\?ed 0‘;;:[1’]101:: e i
independently or get locked, depending on the tas h1 o ac’:tuationga :flery hi
dexterity to zero dexterity. This, coupled with the J Jesq: ks i< Contry)
mechanism and tactile sensing provided by BRI Trales A on hand ,
marvel, In contrast, the robot gripper with two or three ﬁngershhas almogt no
dexterity. The human arm’s articulation, and to the same extent, the humap leg's

locomotion are challenges yet to be met.

1.7 DESIGN AND CONTROL ISSUES

Robots are driven to perform more and more var'iety Gf_hlghly skilled jobs wig,
minimum human assistance or intervention. This requires !;hem to ha‘ve much
higher mobility, manipulatability, and dexterity than convept}onal machine togls,
The mechanical structure of a robot, which consists of rigid cantilever beamg
connected by hinged joints forming spatial mechanism, is inherently poor ig
stiffness, accuracy, and load carrying capacity. The errors accumulate because
joints are in a serial sequence. These difficulties are overcome by advanced desigp
and control techniques. : _

The serial-spatial linkage geometry of a manipulator is described by complex
nonlinear transcendental equations. The position and motion of each joint is
affected by the position and motion of all other joints. Further, each joint has to be
powered independently, rendering modeling, analysis, and design to be quite an
involved issue. .

The weight and inertial load of each link is carried by the previous link. The
links undergo rotary motion about the joints, making centrifugal and Coriolis
effects significant. All these make the dynamic behaviour of the robot manipulator
complex, highly coupled, and nonlinear. The kinematic and dynamic complexities
create unigue control problems that make control of a robot a very challenging
task and effective control system design a critical issue. The robot control
problem has added a new dimension in control research.

The environment in which robots are used poses numerous other complexities
as compared to conventional machine tools. The work environment of the latteris
well-defined and structured and the machine tools are essentially self-contained
to handle workpieces and tools in well-defined locations. The work environment
of the robot is often poorly structured, uncertain, and requires effective means (0
identify locations, workpieces and tools, and obstacles. The robot is also required
to interact and coordinate with peripheral devices. :

Robots being autonomous systems, require to perform additional tasks of
planning and generating their own control commands. The detailed procedure,
control strategy, and algorithm must be taught in advance and coded in 20
appropriate form so that the robot can interpret these and execute these accurately-
Effective means- to store the data, commands, and manage memory are ﬂlfo
needed. Thus, programming and command generation become critical issues 1
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rﬁbotlé:'s. To monitor it’s:own motions and to adapt to disturbances and
unpre: lcr;able‘e.nwronments, robot requires interfacing with internal and external
sensors. o utilize the sensory information, effective sensor-based al gorithms and

aldv.‘tmc;::d control systems are required, in addition to a thorough understanding of
the task.

1.8  MANIPULATION AND CONTROL

This section briefly describes the topics, which will be covered in this text, and
introduces some terminology in the robotics field.

'I“ the analysis of spatial mechanisms (manipulators), the location of links,
jmntsl, f{“d end-effector in 3-D space is continuosly required. Mathematical
IdesCT{L‘“IOI‘: of the position and orientation of links in space and manipulation of
these is, naturally, one topic of immediate importance. :

To describe position and orientation of a body in space, a frame is attached to
the body. The position and orientation of this frame with respect to some reference
coordinate frame, called base frame, mathematically describes the location of the
body. Frames are attached to joints, links, end-effector, and workpieces in the !
environment of the robot to mathematically describe them, as illustrated in '
Fig. 1.19. o

Often, the description of a body in one frame is known, while requirement is
the description of the body with respect to another frame. This requires mapping
or transforming or changing the description of its attributes from one frame to
another. Conventions and methodologies for description of position and
orientation, and the mathematics of transforming these quantities are first
discussed in this text.

Tool or
end-effector
frame

Joint/link
frame

Zy

Base ?/" 3

e
Ll — Yo Workpiece

frame

L

Xo A
X

Fig. 1.19 Attachment of frames for manipulator modelling

Consider the simplest nontrivial two-link planar manipulator of Fig. 1.20 with
link lengths (L, L,) and assume that the joint angles are (6, 6,) and the
coordinates of end-effector point P are (x, y). From simple geometrical analysis
for this manipulator, it is possible to compute coordinates (x, y) from the given
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joint angles (6, 6,) and for a given location of point P (x, y), joint angleg ©,, ¢
canbe computed. - : | )

Y

Px, y)

e
Fig. 1.20 The 2-DOF two-link planar manipulator

The basic problem in the study of mechanical manipulation is of COMputing p,
position and orientation of end-effector of the manipulator when the joint angles
are known. This is referred to as forward kinematics problem. The invers,
kinematics problem is to determine the joint angles, given the Position apq
orientation of the end-effector.

A problem that can be faced in inverse kinematics is that the solution for joint
angles may not be unique; there may be multiple solutions. This is illustrated for
the simple planar 2-DOF manipulator in Fig. 1.20.

If the 2-DOF manipulator in Fig. 1.20 is used to position some object held iy
its end-effector to a specified position P, (x;, y,), the joint angles 6, and 6, thy
make the end point coincide with desired location must be found. This is the
inverse kinematics problem. For the manipulator in Fig. 1.20, there are two sets
of joint angles 6, and 6, that lead to the same endpoint position, as illustrated iy
Fig. 1.21.

The inverse kinematics problem is, thus, to calculate all possible sets of joint
angles, which could be used to attain a given position and orientation of the end-
effector of the manipulator. The inverse kinematics problem is not as simple as
the forward kinematics, as it requires the solution of the kinematics equations
which are nonlinear, involving several transcendental terms. The issues of
existence and nonexistence of solutions and of multiple solutions are to be
considered in detail. It may also be stated here that not all points in space are
reachable by a given manipulator. The space covered by the set of reachable
points defines the workspace of a given manipulator. For example, the workspace
of the 2-DOF planar manipulator in Fig. 1.21 is shown in Eig. 1.22.

Another important problem of a manipulator is to find the end-effector velocity
for given joint velocities and its inverse problem of calculating the joint velocities
for specified end-effector velocity. These two problems, direct and inverse nee:d
the manipulator Jacobian (matrix), which is obtained from the kinematic
parameters. R

An identical problem of the static force analysis can also be solved through the
Jacobian. This problem is stated as: given a desired contact force and moment,
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e

Position I} ~ = ~¢

Fig. 1.21 Two possible joint positions for a given end point position.

ot

Radius | Ly = Ly

Radius L1+ L,

N

WON

Fig. 1.22 The workspace of a 2-DOF planar manipulator

determine the set of joint torques to generate them or vice-versa. Figure 1.23
illustrates the interaction of a manipulator at rest with the environment; the
manipulator is exerting a force F on the body. '

Y}

O
X

Fig. 1.23 Manipulator exerting a force on the.environment

To perform an assigned task or to attain a desired position, a manipulator is
required to accelerate from rest, travel at specified velocity, traverse a specified
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path, and- finally decelerate to stop. To accomplish this, the trajectory to pe
followed is computed. To traverse this trajectory, controlling torques are applieq
by the actuators at the manipulator joints. These torques are computed from the
eguauomns of motion of the manipulator, which describe the dynamics of the
manipulator. :I'hc dynamic model is very useful for mechanical design of the
structure, choice of actuator, computer simulation of performance, determinatiop
of control strategies, and design of control system.

During the work cycle, the motion of each joint and end-effector must pe -
:smooth a_nd controlled. Often the end-effector path is described by a number of
intermediate locations, in addition to the desired destination. The term spline is
used to rf:fer to a smooth function, which passes through a set of specified points,
:I'he monox? of -end-effector through space from point A to point C via point B ig
illustrated in Fig. 1.24. The goal of trajectory planning is to generate time lawsg

foche manipulator variables for a given description of joint or end-effector
motion.

Path

B (via point)

2L ANNH

Fig. 1.24  Trajectory generation for motion from A to C via B

The dynamic model and the generated trajectory constitute the inputs to the
motion-control system of the manipulator. The problem of manipulator control is
to find the time behaviour of the forces and torques delivered by the actuators for
executing the assigned task. Both the manipulator motion control and its force
interaction with the environment are monitored by the control algorithm. The
above exposed problems will lead to the study of control systems for manipulator
and several control techniques.

The tasks to be performed by the manipulator are: (i) to move the end-effector
along a desired trajectory, and (ii) to exert a force on the environment to carry out
the desired task. The controller of manipulator has to control both tasks, the
former is called position control (or trajectory control) and the latter force

control. A schematic sketch of a typical controller is given in Fig. 1.25. The
positions, velocities, forces, and torques are measured by sensors and based on

these measurements and the desired behaviour, the controller determines the

|
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inputs to the actuators on the robot so that the end-effector carries out the desired
task as closely as possible.

Desired

=% Controller > Manipulator

Task

Sensors <[

Fig.1.25 A schematic sketch of a manipulator control éystem

1.9 SENSORS AND VISION

The control of the manipulator demands exact determination of parameters of
interest so that the controller can compare them with desired values and
accordingly command the actuators of the manipulator. Sensors play the most
important role in the determination of actual values of the parameters of interest.
For manipulator motion control, joint-link positions, velocities, torques, or forces
are required to be sensed and the end-effector position and orientation is required
for determining actual trajectory being tracked. The force control requires sensing
of joint force/torque and end-effector force/torque.

Sensors used in robotics include simple devices such as a potentiometer as
well as sophisticated ones such as a robotic vision system. Sensors can be an
integral part of the manipulator (infernal sensors) or they may be placed in the
robot’s environment or workcell (external sensors) to permit the robot to interac
with the other activities and objects in the workcell. -

The task performance capability of a robot is greatly dependent on the sensors
used and their capabilities. Sensors provide intelligence to the manipulator.
Sensors used in robotics are tactile sensors or nontactile sensors; proximity or
range sensors; contact or noncontact sensors, or a vision system.

A robotic vision system imparts enormous capabilities to a robot. The robotic
vision or vision sensing provides the capability of viewing the workspace and
interpreting what is seen. Vision-equipped robots are used for inspection, part
recognition, and identification, sorting, obstacle avoidance, and other similar

tasks.

110 PROGRAMMING ROBOTS

Robots have no intelligence to learn by themselves. They need to be “taught”
what they are expected to do and “how” they should do it. The teaching of the
workcycle to a robot is known as robot programming. Robots can be
programmed in different ways. One is ™ teach-by-showing” and the other is using
textual commands with a suitable interface. ;
The manipulator is required to execute a specified workeycle and, therefore,
must know where to move, how to move, what work to do, where and so on. In
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teach-by-showing method of programming, the manipulator is made to move
through the desired motion path of the entire workcycle and the path and other
parameters are saved in the memory. This method is also known as lead through
programming.

A robot programming language serves as an interface between the humap
user (the programmer) and the robot manipulator for textual programming. The
textual programming using a robot programming language can be done on-line or
off-line. In on-line programming, the manipulator executes the command as soon
as it is entered and the programmer can verify whether the robot executes the
desired task. Any discrepancy is, therefore, corrected immediately.

In off-line programming, the robot is not tied-up and can continue doing its
task, that is, there is no loss of production. The programmer develops the program
and tests it in a simulated graphical environment without the access to the
manipulator. After the programmer is satisfied with the correctness of the
program, it is uploaded to the manipulator. In off-line and on-line programming,
after the program is complete, it is saved and the robot executes it in the ‘run’
mode relentlessly.

The robot programming languages are built on the 'Iin_es of conventional
computer programming languages and have their own ‘vocabulary’, “grammar’,
and ‘syntaxes’. A typical vocabulary includes command verbs for (i) definition
of points, paths, frames and so on, (ii) motion of joints-links and end-effector,
(i11) control of end-effector, say grippers to open, close and so on; and
(1v) interaction with sensors, environment, and other devices.

Each robot-programming language will also require traditional commands and
functions for: arithmetic, logical, trigonometric operations; condition testing and
looping operations; input-output operations; storage, retrieval, update, and
debugging and so on.

The robot programming encompasses all the issues of traditional computer
programming or software development and computer programming languages.
This is an extensive subject itself and is not included in this book.

1.11 THE FUTURE PROSPECTS

The use of robots in industries has been increasing at the rate of about 25%
annually. This growth rate is expected to increase rapidly in the years to come
with more capable robots being available to the industry at lesser costs. The
favourable factors for this prediction are:
(i) More people in the industry are becoming aware of robot technology and
its potential benefits.
(ii) The robotics technology will develop rapidly in the next few years and
more user-friendly robots will be available.

(iii) The hardware, software interfacing, and installations will become easier.
(iv) The production of industrial robots will increase and will bring down the

..unit cost, making deployment of robots justifiable.
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(v) The medium and small-scale industries will be able to beneficially utilize
the new technology. | |

. All Phese will increase the customer base and, therefore, demand for the
md“f‘t”a].mbﬁls and manpower geared with robot technology. :
Robot is the technology for the future and with a future. The current research
goals and trends indicate that the industrial robots of the future will be more
WPUSt- more accurate, more flexible, with more than one arm, more mobile, and
will have many more capabilities. The robots will be human friendly and

intelligent, capable of responding to voice commands and will be easy to program.

1.11.1 Biorobotics and Humanoid Robotics

A new research field in robotics inspired by biological systems has arisen. The
technological developments have made it possible for engineers and robot
des'lgners to look for solutions in nature and look forward to achieving one of
th2ir most attractive goals to develop a humanoid robot. '

Conventional viewpoint in robot design is dominated by its industrial
applications, where emphasis is on mechanical properties that go beyond human
performance, such as doing stereotype work tirelessly, carrying heavy loads,
working in hostile environment, or giving high precision and consistent
performance. :

The biorobotics is historically connected to service robotics. These robots are
conceptualized in a different manner than industrial robots. Their task is usually
to help humans in diverse activities from house cleaning to carrying out a surgery,
or playing the piano to assisting the disabled and the elderly.

The motion abilities of biological systems, their intelligence, and sensing are
far ahead of all the achievements in manmade things till date. Progress in robot
technology, rapid technological developments through the remarkable
achievements in computer-aided technology in recent years have opened an
entirely new research area, where the objective is to analyze and model biological
systems behaviour, intelligence, sensing, and motions in order to incorporate
properties of biological systems in robots. The ultimate objective is to produce a
humanoid robot. The aspirations are not to limit these to service robots but these
are to be extended to the industrial robots. It is expected that humanoid robots
will be able to communicate with humans and other robots; facilitate robot
programming; increase their flexibility and adaptability for executing different
tasks; learn from experience; and adapt to different tasks and environments or
change of place.

In the implementation of biological behavioural systems, the replication of
anthropomorphic characteristics is possibly the answer in every context of
development in robotics. The research in anthropomorphic robotics has advanced
to development of anthropomorphic components for humanoid robots like
anthropomorphic visual and tactile sensors, anthropomorphic actuators and
anthropomorphic computing techniques. Replicating the functionality of the
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human brain is one of the hardest challenges in the biorobotics and in general stjj;
one of the most difficult objectives.

112 NOTATIONS

In a subject of interdisciplinary nature like robotics encompassing mech:rmical,
electrical and many other disciplines, use of clear and con§1stent no!:atmns is
always an issue. In this text we have used the following notations ang
conventions:

1. Vectors and matrices are written in upper casc-bold-italic..Unit vectors
are lower case-bold-italic, as an exception. Lower case italic is used for
scalars. Vectors are taken as column vectors. Components of a vector or
matrix are scalars with single subscript for vector components and double
subscripts for matrix components. For example, components of a vector
are g; or b, and elements of a matrix are a;;.

2. Coordinate frames are enclosed in curved parenthesis {}, for example
coordinate frame with axes XYZ is {x y z} or coordinate frame 1 is {1} and
square parenthesis [ ] are used for elements of vectors and matrices.

3. The association of a vector to a coordinate frame is indicated by a leading
superscript. For example, °P is a position vector P in frame {0}.

4. A trailing subscript on a vector is used, wherever necessary to indicate
what the vector represents. For example, P,,;, represents the tool position
vector and v; represents velocity vector for link i.

5. Matrices used for transformation from one coordinate frame to another,
have a leading superscript and a trailing subscript. For example, {:'T[
denotes the coordinate transformation matrix, which transforms
coordinates from frame {1} to frame {0}.

6. Trailing superscripts on matrices are used for inverse or transpose of a
matrix, for example, R™" or R” and on vectors for transpose of a vector, for
example, if P is a column vector PT is a row vector,

7. Many trigonometric functions are required in mathematical models. The
sines and cosines of an angle 6; can take any of the forms:
cos 6, = CO; = C; and sin 6, =56, =S,. Some more shortened forms are Ve.
for (1 —cos 6;) and S; for sin (6; + 6)).

A complete list of symbols used in the text is available in Appendix E.

1.13 BIBLIOGRAPHICAL REFERENCE TEXTS

Literature production in the nascent field of robotics has been conspicuous in the
last twenty years, both in terms of research monographs and textbooks. The
number of scientific and technical journals dedicated to robotics are also few,
though the robotics field has simulated an ever-increasing number of scholarsand
has established a truly respectable international research community. ‘

This chapter, therefore, includes a selection of journals, reference texts and
monographs related to the field. The bibliography references cited here are

-
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representative of publications dealing with topics of interest in robotics and
related fields.

General and Specialized Texts

The following texts include géneral and specialized books on robotics and allied
subjects. The texts on robotics share an affinity of contents with this text and may
provide the complimentary reading for the material in this text. Other books and
monographs render supplementary material for those readers who wish to make a
thorough study in the robotics.
1. Issac Asimov, The Complete Robot, Doubleday & Company, Garden
City, New York, 1982. |
2. Amitabh Bhattacharya, Robotics and their Applications in India: A State
of the Art Report, Department of Science and Technology, New Delhi,
1987.
3. 1.J. Craig, Introduction to Robotics, Mechanics and Control, 2™ edition,
Addison-Wesley, 1989. :
4. R.C. Dorf and S. Nof, Editors, The International Encyclopedia of
Robotics, John C. Wiley and Sons, 1988.
‘5. D.M. Etter, Engineering Problem Solving with MATLAB, Prentice-Hall
. Englewood Cliffs, 1993.
6. Daniel T. Finkbeiner, II, Introduction of Matrices and Linear
Transformation, D.B. Taraporevala Sons & Co. Pvt. Ltd., Mumbai, 1968.
7. K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence, McGraw-Hill, 1987.
8. M.P. Groover, M.Weiss, R.N.Nagel and N.G.Odrey, Industrial Robotics
—Technology, Programming and Applications, McGraw-Hill, 1936.
9. R.S. Hartenberg and J. Denavit, Kinematic Synthesis of Linkages,
McGraw-Hill, 1964. -
10. P.A. Janakiraman, Robotics and Image Processmg, Tata McGraw-Hill
Co. Ltd., New Delhi, 1995. :
11. R.D. Klafter, Thomas A. Chmielewski and Michael Negin, Robotic
Engineering: An Integrated Approach, Prentice-Hall, 1994.
12. J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,

1991.
13. N.E. Leonard and W.S. Levone, Using MATLAB to Analysis and Design

Control Systems, Addison-Wesley, 1995.

14. Fairhurst C. Micheal, Computer Vision for Robotic Systems, Prentice-
Hall International (UK), 1988.

15. LJ. Nagrath and M. Gopal, Control Systems Engineering, New Age
International Ltd., 3" ed., 1999.

16. R.P. Paul, Robot Manipulators: Mathematics, Programming, and

Control, MIT Press, Cambridge, Mass, 1981.
17. E. L. Rivin, Mechanical Design of Robots, McGraw-Hill, 1988.
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18.

19.

20.
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22

23.
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R.J. Schilling, Fundamentals of Robotics: Analysis and Contro),
Prentice-Hall of India, New Delhi, 1996.

L. Sciavicco and B. Siciliano, Modeling and Control of Robo;
Manipulators, The McGraw-Hill Companies Inc., New York, 1996, -
J.E. Shigley and Jr.J.J. Uicker, Theory of Machines and MEChﬂﬂmeg,
2nd edition, McGraw-Hill, 1995. :

M.W. Spong, F.L. Lewis and C. Abdallah, Robot Control: Dynamics,
Motion Planning, and Analysis, IEEE Press, New York, 1993,

W. Stadler, Analytical Robotics and Mechatronics, McGraw-Hil| Inc.,
New York, 1995.

T. Yoshikawa, Foundations of Robotics: Anal ysis and Control, Prentice.
Hall of India, 1998. (MIT Press, Cambridge, Mass., 1990).

Dedicated and Related Journals

Some of the following journals and magazines are dedicated to robotics while
other prestigious journals give substantial space to robotics and occasionally or
routinely publish papers in the robotics field, on allied topics or contain articles
on various aspects of robots and robotics.

1.
2.
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 EXERCISES

Name the four basic components of a robot system.

Describe the functions of four basic components of a robot.

Define the degree of freedom. .
Name the four basic arm configurations that are used in robotic
manipulators.

Where is the end-effector connected to the manipulator?

Give all possible classifications of robots.

|
2
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1.7 Describe the role of arm and wrist of a robotic manipulator. -
1.8 Define the term work envelope.
1.9 Draw the side view of the workspace of a typical
(a) Cylindrical configuration arm.
(b) Polar configuration arm.
(c) Articulated configuration arm.
1.10 Briefly describe the four basic configurations of arm in robotic
manipulators.
1.11 Define the following
(a) Load carrying capacity
(b) Work volume
(¢) End-effector.
1.12 What is the range of number of axes that may be found in industrial
manipulators?
1.13 How many degrees of freedom are normally provided in the arm of a
manipulator?
1.14 How many degrees of freedom can a wrist have? What is the purpose of
these degrees of freedom?
1.15 Discuss the differences between polar arm and articulated arm
configurations.
1.16 What are the advantages and disadvantages of cylindrical arm
configuration over a polar arm configuration?
1.17 For each of the following tasks, state whether a gripper or an end-of-arm
tooling is appropriate:
(a) Welding.
(b) Scraping paint from a glass pane.
(c) Assembling two parts.
(d) Drilling a hole.
(e) Tightening a nut of automobile engine.
1.18 An erd-effector attached to a robot makes the robot “specialized” for a
particular task. Explain the statement.
1.19 Make a chart showing the major industrial applications of robots.
1.20 Make a chronological chart showing the major developments 1n the field
of robotics.
1.21 Prepare a state of art report on robotics in India.
1.22 Who are the users of robots in India? Prepare a status report on industrial
applications of robots in India and project the demand for the future.
1.23 Find out the applications of robots in space exploration.
1.24 Discuss reasons for using a robot instead of human being to perform a
specific task.
1.25 Discuss the possible  applications of robots other than industrial
applications. Prepare a report and indicate the weakest areas.
1.26 What are the socioeconomic issues in using robots to replace human
workers from the workplace? Explain.
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1.27 What are the control issues in robotic control? Explain briefly.
; scri ods of teaching robots. . |

}gg Eleoqwcrzltl;: ;‘;E::: ldhiffercnt from c%)nvcntional machine tools? Discuss the
design and control issues involved in the two cases and c?mPa;e.

1.30 Explore the anatomy of the human wrist joint and analyze it for type of
motions provided, number of degrees of freedom, nu mber of joints, type of
joints, etc. . i '

1.31 Arobot is required to perform an assembly of a shaft into a beanr_lg placed
in an arbitrary position. How many degrees of freedom are requlred for a
manipulator to perform this task? If the bearing is placed in a fixed plane,
say a horizontal plane, what will be the required number Of: degrees of
freedom? Explain.

1.32 Study the human arm anatomy and describe the features a humanoid robot
should have.

i
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he robot (manipulator or arm) consists of several rigid links, connected

together by joints, to achieve the required motion in space and perform the
desired task. The modeling of robot comprises of establishing a special
relationship between the manipulator and the manipulated object. The position of
links in space and their motion are described by spatial geometry.

A systematic and generalized approach for mathematical modeling of
position and orientation of links in space with respect to a reference frame is
carried out with the help of vector and matrix algebra. Because the motion of
each link can be described with respect to a reference coordinate frame, it 18
convenient to have a coordinate frame attached to the body of each link.

2.1 COORDINATE FRAMES

In a 3-D space, a coordinate frame is a set of three orthogonal right-handed axes
X, Y, Z, called principal axes. Such a frame is shown in Fig. 2.1 with the origin of
the principal axes at ‘0" along with three unit vectors X, ¥, Z along these axes.
This frame is labelled as {x yz} or by a number as {1} using a numbering scheme.

Other frames in the space are similarly labelled.
Any point P in a 3-D space can be defined with respect to this coordinate

frame by a vector OP (a directed line from origin O to point P pointing towards
P). In vector notation '

I_i:af’=pr+pyﬁ+pzf 2.1
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Fig. 2.1 Posiffcm and orientation of a point P in a coordinate frame

where p,, p,, p, are the components of the vector OP along the three coordinate
axes or the projections of the vector OP on the axes X, Y, Z, respcctlvely A
frame-space notation is introduced as 'P to refer to the point P (or vector OP)

with respect to frame {1} with its components in the frame as lpx, lpy, and- lpz,
that is,

I 1 My 1 A 1 A =
P="px%+ py+ piz" - ' (2:2)
In vector-matrix notation, thts equation can be wmtcn in terms of the vector
components only as: .
1
Px
. 1 _I1 | P (RO 3
po| 2y |=['pe 'py e 2.3)
P, :
Observe that the leading superscript refers to the coordinate frame number
(frame {1} in this case) and {A]Tincﬂgates the transpose of matrix A. In addition,
the direction of the position vector OP can be expressed by the direction cosines:

1 1 1

Py - s . ]
= , COS ¥ 3
with L:Iﬁl:la’.|=\/(lp't)2 +('p,) + ('p.) (2.4)

where @, 3, and yare, respectively, the right handed angles measured from the
coordinate axes to the vector OP, which has a length L. a

211 Mapping

Mappings refer to changing the description of a point (or vector) in space from
one frame to another frame. The second frame has three possibilities in relation to
the first frame:

i
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(a) Second frame is rotated with respect to the first; the origin of both the’
frames is same. In robotics, this is referred as changing the orientation.
(b) Second frame is moved away from the first, the axes of both frames remain
parallel, respectively. This is a translation of the origin of the second frame
from the first frame in space, :
(c) Second frame is rotated with respect to the first and moved away from it,
that is, the second frame is translated and its orientation is also changed.
These situations are modelled in the following sections. It is important to note
that mapping changes the description of the point and not the point itself. .

2.1.2 Mapping between Rotated Frames

Consider t.wo frames, frame {1} with axes X, ¥, Z, and frame {2} with axes
UV _W with a common origin, as shown in Fig. 2.2. A point P in space can be
described by the two frames and can be expressed as vectors lp and °P,

1 . & "
P='pi+ lpyy +1p,7 | ' (2.5)

P=2pi+ Ppi+ tp0 (2.6)
where 2Pm 2Pm 2pw are projections of point P on frame {2} or {u v w} (the U, V,

W coordinates). Because the point P is same, its two descriptions given by
Egs. (2.5) and (2.6) are related. '

7
; {1} or
W P, . {xyz)
%
B PV P
Pw I
{2} or = L
{uvw) 7J
oy =12 -y
. 1 737Dy
>\/T e
Pl Lo —
Py
X
U

Fig. 2.2 Representation of a point P in two frames (x y z} and {u v w}
rotated with respect to each other

Now, let the problem be posed as, “The description of point P in frame [%} 19
known and its description in frame {1} qis to be found (or vice—versa‘)." This is
accomplished by projecting the vector “P on to the coordinates of l'['llil’le {l'}.
Projections of >P on frame {1} are obtained by Iuking the dot product of “P with
the unit vectors of frame, { 1}. Thus, substituting for “P from Eq. (2.6) gives
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”~ ~ -~ A A 72 ~
'pe=%P=% 2pdi+%-*p i+ % p,W
- - A A A 2 -
Py=5-P=5-Ypji+§-7pp+5-"pW @7
- A A A A A 7 A
IP; =z.P=z 2p".r,l:+z 2pvvﬂz- PuW

'pe| R £9 W[ 2p,
'p}, =|ya yv yw zpy (2.8)
'p.| Lz i9 zan || 2p, '
In compressed vector-matrix notation Eq. (2.8) is written as
'P='R,%p L (2.9)
where
X xv £w
Ry=|5i §5 jw 2.10),
iH v Zw

Because frames {1} and {2} have the same origin, they can only be rotated
with respect to each other, therefore, R is called a rotation matrix or rotational
transformation matrix. It contains only the dot products of unit vectors of the two
frames and is independent of the point P. Thus, rotation matrix 'R, can be used
for transformation of the coordinates of any point P in frame {2} (which has been
rotated with respect to frame {1}) to frame {1}.

On similar lines, the rotation matrix 2RI, which expresses frame {1} as seen
from frame {2}, is established as

x -y 43
2 L A A A
Ry=\vx_ vy 9.3 (2.11)

Wy wey wez
Hence, a point P in frame {1} is transformed to frame {2} using
P="R/'P (2.12)

From Egs. (2.10) and (2.11) and’ the fact that vector dot product is
commutative, it is easily recognized that

T
Ry =["R,] 2.13)
From Egs. (2.9), (2.12), and (2.13), ?P iis expressed as
-1
PR P=RIP=['R,] 1p @.14)

Therefore, it is concluded that
R, =[ K] =R

or, in general, for any rotational transformation matrix R

|
|

|
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R'=R" and RR"=1 ¢l (213)
where I 'is the 3 x 3 identity matrix. i |

2.1.3 Mapping between Translated Frames

Consider two frames, frame {1} and frame {2}, with origins O, and O, such that
the axes of frame {1} are parallel to axes of frame {2}, as shown in Fig. 2.3. A

point P in space can be expressed as vectors aﬁ and 0_2}" with respect to the
frames {1} and {2}, respectively.

w
2pw .
| ~._ P
d,% , |
IL . — . I
: o,P 1
‘ o) 2 1] 2
! 2 Py
m . v
v S
D, i -é d, oy
01RH“~YHHH //
X S Lny =2
P hhs T | o
dx o = [ rd

Fig. 2.3 Translation of frames: frame (2] is translated with respect
to frame {1) by distance 'D,

The two vectors are related as

0P = 0,P + 0,0, (2.16)

or in the notation introduced earlier Eq. (2.16) becomes
'p=2P+'D, .17

where 'D, = 0,0, is the translation of origin of frame {2} with respect to

frame {1}. Because p = °p, *p, p, I, substituting 2P and 'D, in Eq. (2.17)
gives

P =(Cp, +d )% +(Cp, +d))§ +Cpy +d:)2 (2.18)
As lp="p 2+ 1pj,,y"+ 'p,Z , this gives.

2 N
'pr="putdei 'py = 7py+dyi P =Pt G

which is verified from Fig. 2.3. ' ‘
Translation is qualitatively different from rotation in one important respect. In
rotation, the origin of two coordinate frames is same. This invariance of the origin
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characteristic allows the representation of rotations in 3-D space as a 3 x 3
rotation matrix R. However, in translation, the origins of translated frame apq
original frame are not coincident and translation is represented by a3 x 1 Vector,
'D,.

A powerful representation of translation is in a 4-D space of homogeneoy;
coordinates. In these coordinates, point P in space with respect to frame (1}is
denoted as [refer to Fig. 2.1 and Eq. (2.3)]:

P
[

E
'P'—' ]P_v = []px lpy lpz 0.] (2.19)

P,
L 0 |
In Eq. (2.19), the fourth component ¢ is a non-zero positive scale factor. The
physical coordinates are obtained by dividing each component in the
homogeneous representation by the scale factor. If the value of the scale factor ¢
is set to 1, the components of homogeneous and Cartesian representation are
identical. Scale factor can be used for magnifying or shrinking components of a
vector in homogeneous coordinate representation. For example, a physical vector

—_—

M =5 =3 Jj+3korM= [5 -2 3]"isequivalent to homogeneous coordinate
vector L=[5 -2 3 1] witho=1orfore=2itis L = [10 -4 6 2]7or

L=[25 -1 15 0.5])7 for 6=0.5 and so on. In robotics, normally a scale
factor of 1 (0 = 1) is used. For more details on homogeneous coordinates, see
Appendix A.

Using the homogeneous coordinates, Eq. (2.17) is written in the vector-matrix
form as:

100 d,] rzpu"
p_ |01 04,]| 2,
001 d/[|2p,
000 1] 1
or 'p= sz °P (2.20)

Here, l1"2 is a 4 x4 homogeneous transformation matrix for translation of

originby 'D, = 0,0, =[d, d, d, 1]".Itiseasily seen that Eq. (2.20) is same
as Eq. (2.18). The 4 x 4 transformation matrix in Eq. (2.20) is called the basic
homogeneous translation matrix.

2.1.4 Mapping between Rotated and Translated Frames

Consider now, the general case of two frames, frame {1} and frame {2}
Frame {2} is rotated and translated with respect to frame {1} as shown in
Fig. 2.4. The distance between the two origins is vector 0,0, or 'D,. Assume a
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point P described with respect to frame (2} as 2P, it is required to refer it to

frame {1}, that is, to find 'P.

Fig. 24 Mapping between two ﬁ'ames-tr‘anslatéd and rotated with respect to each other

In terms of vectors in Fig. 2.4,

O,P = 0,P + 0,0, : R v
Vector O, P in frame {2} is>P; therefore, it must be transformed to frame {1}.
First, consider an intermediate frame {1’} with its origin coincident with O,. The
frame {1°} is rotated with respect to frame {2} such that its axes are parallel to
axes of frame {1}. Thus, frame {1’} is related to frame {2} by pure rotation.
Hence, using Eq. (2.9), point P is expressed in frame {1'} as

'p="R,%P (2.22)

Because frame {1’} is aligned with frame {1}, 'R, = 'R,. Hence

_ 0,P ='P="R,’P (2.23)
Substituting this in Eq. (2.21) and converting to vector-matrix notation, |
lp-'R,%P+'D, (2.24)

The vector 0,0, or 'D, has components (d, d, d,) in frame {1} as

‘_-')_16_’2 = iDZ =[d, d, dz]T (2.25)

Using the homogeneous coordinates, from Egs. (2.10) and (2.20), the two

terms on the right-hand side of Eq. (2.24) can be combined into a single 4 x 4
matrix, which is then writtenas :

lp=11,°P (2.26)

Here, 'P and 2P are 4 x 1 vectors as in Eq. (2.19) with a scale factor of 1 and

T is 4 x 4 matrix referred to as the homogeneous transformation matrix (or

homogeneous transform). It describes both the position and orientation of
frame {2} with respect to frame {1} orany frame with respect to any other frame.

‘The components of 'T, matrix are as under

. atT
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_ 1 | |
ﬁ —~1R ~—>'D,
e R
i &P X dx _ 'i
sa s pw  d E
L pa 3Py dy ..y
f2= ch b W dz (2.27]__?
00 0 1
P ¥

Seale factor 00—
The matrix 'T2 can be divided into four p_arts as
Eq. (2.27). The four submatrices of a generalized ho
as shown below:

indicated by dotted linesj -
mogeneous transform T 7,

Rotation matrix ! Translation vector |
I
(3% 3) J' 3x1) |
________________ B S
T= : ] (2.8
Perspf.actlve | Scale factor %)
transformation matrix .: (1% 1)
(1x3) , _

Perspective transformation matrix is useful in vision systems and is set tozero
vector wherever no perspective views are involved. The scale factor ¢ has non-
zero positive (6 > 0) values and is called global scaling parameter. ¢ > 1is
useful for reducing and 0 < 6 < 1 is useful for enlarging. For robotic study
presented here ¢ = 1 is used. For describing the position and orientation of
frame {2} with respect to frame {1}, T takes the form

e p——

l ! . P
lrzz[“f%___l_lﬂz] | 229

In the reverse problem when 'P is known and 2P is to be found, Eq. (2.26) -:.

takes the form |
P=°T 1P (230

where 2T, = ['T,] ™.

22 DESCRIPTION OF OBJECTS IN SPACE

The location of an object is completely specified iﬁ 3-D space by describing both

its position and its orientation. Consider a body Bin space whose location i to be
specified with respect to a known reference frame {0}. Let a frame with origi
0,, frame { 1}, be attached to the body B, as shown in Fi:n 2.5. The homogcneﬂus
transform “Tl completely describes the location (positigﬁ ::md orientation) 0 the

body B, that is, th ; A oy
y the position vector component ODI of uTl describes its pqsll!on :

pody

" . 1 0 _
w%ule the rotation matrix component "R | describ
with respect to frame {0}.

—

es the orientation of the P77 =

P

4

* g
e
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w

Y

Reference frame {0} Body frame or -object frame {1}

Fig. 2.5 Description of a body (object) in space using homogeneous transform

In a robotic arm, the location of links is specified by assigning frames to each
link, starting from the base to the tool or end-effector. While the convention for
assigning frames to links will be discussed in the next chapter, here, the
convention for assigning frames to the end-effector using normal, sliding, and
approach vectors, which are yaw, pitch, and roll vectors, respectively, is
explained.

The end-effector coordinate frame is shown in Fig. 2.6. The axes of the frame
are defined as: (i) z-axis is the approach vector a, that is, the direction in which

the end-effector approaches towards the target, (ii) y-axis is the direction of the
sliding vector, that is, the direction of opening and closing of the end-effector as it

manipulates objects. It is also called orientation vector 4, and (iii) x-axis is the
normal vector n , which is orthogonal to the appmdch and sliding vectors in right-
hdndcd manner, that is, 0 X a.

Normal

*tly

g(/ﬁgou'
v \

> Approéch

s
Orientation A Pi{Eh

Fig. 2.6 Assigning a frame to end-effector—approach, orientation and
normal directions; and roll, pitch, and yaw motions
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In the context of orientation of the end-effector, a rotation about the_noﬂﬂal
vector induces ayaw (), a rotation about sliding vector is equivalenttopitch(p),
and about approach vector is roll (R) motion.

The transformation matrix T for the end-effector with respect to the coordinate
frame {n o a} is written as

[, 8; 8. &
d
r-|™ % % 4 ;[" % :l (2.31)
nZ OZ a?.. dz 0 0 0 I
L0 0 0 I

In the transformation matrix T, the vector d is the translation of end-effector
frame from the reference frame and vectors (n, 0, a) describe the orientation of
end-effector. The vectorsn, o, anda represent the X, Y, Z axes of the end-effector

- frame, The matrix T in Eq. (2.31) is same as in Eq. (2.27) and would apply for
any coordinate frame and, hence, to any joint of the manipulator.

The orientation of the end-effector is specified by the 3X3 rotation

submatrix R. From Egs. (2.27) and (2.31), the end-effector rotation matrix is
‘X EW| Jn. -0, a,
R= 3% 5w l=n

u v zw n

o a

(2.32).

y y

z O

This is the general rotation matrix. Its properties are enumerated below:
* The vectorsn, 0, and a are in three mutually perpendicular directions and
~ hence the rotation matrix R is an orthogonal transformation. Because the
vectors in the dot products are all unit vectors, it is also called
orthonormal transformation.
® The scalar dot product of two different columns is zero, that is,

¥y
a

X
y

y S
-
» =

>

z

n-o=co-a=an=0 (2_33)'
e The scalar dot product of any column with itself is unity, that is,
nn=o0-o0=aa=1 | '

or Inl =lol=lal =1 (2.34)

o The vector product of two different columns gives the third column in a
cyclic order, that is

nxo=a,0Xa=n,axn=o (2.35)

This means that the orientation is completely defined by any two of the
three vectors n, 0, and a. .
® The determinant of the rotation matrix is unity, that is

n.l OI Ial

n, oy, ay|=1 | (2.36)

n, o, a,

e The inverse and transpose relationships are as in Eq. (2.15).
\

|
|
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The mta}ion matrix R has nine elements in total, which are subjected to the
orthogonality constraints [Eqs. (2.33)~(2.35)]. Thus, only three of the nine
elements are independent or, the rotation matrix representation has redundancy.

2.3 TRANSFORMATION OF VECTORS

In the previous section, concepts of mapping and the spatial transformation of
frames were developed. These concepts will now be applied to vector
transformations. Transformation of vectors, rotation and/or translation is
distinctly different from mapping, where the description of a point from one frame

to another is changed. Different situations of transformation of vectors are
discussed now.

2.3.1 Rotation of Vectors

Let us consider a vector P, which is rotated by an angle 8to give new vector 0.
If R(6) is the rotation that describes the rotation 6 about k-axis ( which can be x-
y-or z-axis), then

'0=R(0)'P (2.37)

For the rotation matrix R (6) no super- or subscripts are used because both 'P
and 'Q are in the same frame {1}.

Equation (2.37) is similar to Eq. (2.12) in mathematical form but both have
different interpretation. The distinction is that when vector 'P is rotated with
refersnce to frame {1}, it may be considered either as the vector rotation, as
shown in Fig. 2.7(a), to give 'Q or as the rotation of the frame in “opposite”
direction to give rotated frame {u v w}, as shown in Fig. 2.7(b), for rotation about
X-axis.

z - ' Zig i

! Q /
Q {1} {2}
{1} P P i /( P
1P
o (04
-y Y

(a) Rotation of vector by 8 (b) Rotation of frame by - 8

Fig. 2.7 The equivalence of rotation of a vector and a frame

The operations involved in two cases are identical, only the viewpoint is
different. This allows using the rotational transformation matrices for vector
rotations. It is also noted that, “The rotation matrix R(6) which rotates a vector
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lhm‘fgh Some angle § about k-axis, is'the same as the rotational transformatiop
matrix, which describes a frame rotated by @relative to the reference frame.”

2.3.2 Translation of Vectors

Suppose, a vector 'P is translated by a vector 'D to get 'Q, as shown iy’
Fig. 2.8(a), then the vector lQ is given by

| :Q= pyip (2.38)
. W 7
‘ m P
{2} /
10 1P
04
Y
Vv
0,
-('D)
X

U

(a) Translation of vector by 'D (b) Translation of frame by — ('D)

Fig. 2.8 Translation of vector 'P by distance 'D

Here, as in case of rotations, instead of moving the vector “forward” by 'D, the
frame can be moved in the opposite sense, as shown in Fig. 2.8(b), which is
equivalent to the problem of mapping. This explains why Eq. (2.38) is similar to
Eq. (2.17) obtained by mapping between translated frames.

2.3.3 Combined Rotation and Translation of Vectors

Consider a vector 'P in frame {1}, which is given a rotation of 6 about k-axis
followed by a translation of 'D to get the new vectnrzf’. [£T is the transformation
matrix that describes a frame rotated by R (8) and translated by 'D with respect

to another frame, then _
‘p=T1'P (2.39)

Rotation and translation relationship of Eqgs. (2.30) and (2.39) are same, only
the viewpoint is different. It can then be stated that, “A vector transformation
which rotates the vector by @ and translates it by 'D is same as the homogeneous
transformation 7 that describes a frame rotated by @ and translated by 'D relative

to the reference frame.”

2.3.4 Composite Transformation
Three frames, with each frame rotated and translated from its preceding fr:?m'e,
are depicted in Fig. 2.9. It is proposed to find the transform, which relates “P in
frame {3} to P, as it is seen from frame {1}.
|
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Fig. 2.9  Composite transformation of three frames

‘ The transformation matrix T can be used to progressively map °P, the point P
in frame {3}, to frame {2}, and then to frame {1} as

2P = 2T3 3p ; (2.40)

and 'P='1,%p ! (241
These lead to the overall transformation as | - ,

'P='1,%T,°P (2.42)

or 'p=!1,%P | (2.43)

The overall transformation between frame {3} and frame {1} is obtained from
Eqgs. (2 42) and (2.43) as {
Ty='T,%Ty |1 (2.44)
It easily follows that the transformation from frame {i} to frame {1} is
'T, = My Pyat I, 1T, i (2.45)
or in general from frame {i} to frame {j}, (i > j)
5 W R

I

i-1
or ;= [1*T (2.46)
k=j _

That is, the individual homogeneous transformation matrices can be multiplied
together to obtain composite homogeneous transformation matrix. Matrix
multiplication being not commutative, the order of multiplication, in above
equations is fixed and cannot be altered.

2.4 INVERTING A HOMOGENEOUS TRANSFORM

In robotic analysis, often T is required, while j3"' is known. This is found by
computing the inverse of JT The inverse of the 4 X 4 transformation matrix can
be computed using the conventional methods of matrix inversion. However, the
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homogeneous transform T can be inverted by exploiting its structure, Cop i

tWo frames, frame {1} and frame {2}, rotated and trza nslated relative 1, & .

‘f)ﬂler as shown in Fig, 2.10. Knowing 'T, its inverse “T'; is to be founq Bej

inverse of each other, these homogeneous transform matrices are relate as g
'T, = 1) and 'T, °T, =1

where Iisad x 4 identity matrix.

Fig. 2.10 [Inverting a homogeneous transform

Homogenous transforms sz and le can be written in partitioned form frop
Eq. (2.29) as ' ' =

1 ¥ 1 1]
R )
e (4
r 2p ' 2p ]
a.ndl ’T, = Lﬁ_“dl___o_?__l_l, (2.49)

The rotation sub-matrix R has the property “R, = 'R} (Eqg. 2.13). Therefore,
the mapping of a point P from frame {2} to frame {1}, is

‘P='D,+'R,?P (2.49)
Premultiplying both sides by *R, gives
‘R,'P="R,'D,+°R, 'R,P
As?R, 'R, =1, it gives
R,'P="R,'D,+ P

or PR PR D (2.50)
The mapping of a point P from frame {1} to frame {2} is
’p="R,'P+ %D, - (2.51)
Comparing Eqgs. (2.50) and (2.51), gives -
2Dl =l 2R1 102 :
or P, =='RTD, - (2.52)

Substituting Eq. (2.52) in Eq. (2.48), gives

|
i
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' Ipl . | _IpTl
) [ITZ]‘l » [f)""g%“—‘]:“ﬂlﬂ 22} (2.53)
|

This gives an easy way of computing inverse of a homogencous transform
taking full advantage of the structure inherent in the transform.

2.5 FUNDAMENTAL ROTATION MATRICES

In the previous section, the background to describe the orientation of frame {2}
with respect to frame {1} has been developed. These are now applied to rotation
matrices in different situations. A frame {2} may be rotated about one or more of
the principal axes, an arbitrary axis, or by some fixed angles relative to
frame {1}. Each of these situations is discussed in this section.

2.5.1 Principal Axes Rotation

To determine the orientation of frame {2}, which is rotated about one of the three
principal axes of frame {1}, consider, for example, the rotation of frame {2} with:
respect to frame {1} by angle 6 about the z-axis of frame {1}, as shown in a 3-D
view in Fig. 2.11 (a) and on xy-plane in Fig. 2.11 (b). The corresponding rotation

matrix lRz, known as the fundamental rotation matrix, is denoted by the symbol
R(0) orR(z, 6) or R, .

ijw

v}y 'V
HY -
P |sin 8
cos @
{2} ~ V I
e | XY (or UV)
e = ‘Ye \\ 1 | Plane
ik l
‘/ - s ) R
28 b sin @
X g \
u
X
(a) Rotation of frame {1} by 6 (b) xy-plane showing the rotation

Fig. 2.11 Fundamental rotation by an angle 6 about z-axis

From Eq. (2.1 0),Rz(8) is computed from the dot product of unit vectors along
the principal axes. The dot product of two unit vectors is the cosine of the angle .

between them, for example, X-# = cos 6, Thus,
cos 6 cos (90°+6) cos 90°
R/(0) = | cos (90°-6) . cos @ cos 90°
cos 90° cos 90°  cos 0°
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co -s0 0]
OT. R(O)=|'S8 CO 0 (2.54)“
e " Mol 1D 0 1 T
where S0 = sin g and C@ = cos 6. ' Al
Equation (2.54) is the fundamental rotation matrix for a mt‘_lti.'?“ of angle !
about z-axis of the frame. Similarly, fundamental rotation matrices for Otati
about x-axis and y-axis can be obtained and these are:
[ e ) i B
R(O)=| 0 Co -50 ey (255
~L, 0 .88 C0,
[CcO 0 SO
and R(@®=| 0 1 0 (256
|-88 0. C8 |

The rotation matrices R, R,, and R, exhibit a pattern and using this pattery
these matrices can be easily written. The rotation matrix for rotation about k&
principal axis R, (6) can be obtained as follows: The elements of ith row ang j
column fori=1,2,06r3 fork= X, ¥, or z respectively, of 3 X 3 matrix R, (0) are

“Z€ro except the element (i, i), which is 1. The other two diagonal elements are
cos 6. The remaining two off-diagonal elements are + sin 6, with —sin 8 for
(i+1)™ row and sin 6 for (i+2)™ row in cyclic order.

For principal axes rotations, it is possible to use the homogeneous transformT

withD=[0 0 0]". For example, homogeneous transform corresponding toa
rotation by an angle 6 about z-axis is

[C6 ~56 0:0]
SO CO 00

Tz, 0)= 0 0 1io (2.57)
0001

The fundamental rotation matrices can be multiplied together to represent3
sequence of finite rotations. For example, the overall rotation matrix representing
a rotation of angle 8, abnutx~axi_s followed by a rotation of angle 8, about y-axis
can be obtained by multiplying Eq. (2.55) and Eq. (2.56). That is,

R=R,(6,) R, (6)

: co, 0 56,771 o 0

or R = 0 10 o ce, —56,

-56, 0 Co, 10-56, 'Co,

¢ Y58 CEN
R=| 0 "¢ =5 (2.58)
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where C;=.C6;=cos 6;and §, = = 56, = sin 6.

It is important to note the sequence of multlphcatmn of R matrices. A different
sequence may not give the same result and obviously will not correspond to same
orientation of the rotated frame. This is because the matrix product is not
commutative. In view of this, it can be concluded that two rotations in general do
not result in same oricntation and the resultant rotation matrix depends on the
order of rotations.

Another significant variable is how the rotations are performed. There are two
alternatives: ‘
(i) to perform successive rotations about the principal axes of the fi xed frame.
(ii) to perform successive rotations about the current principal axes of a
moving frame.

The successive rotations in either case, in general, do not produce identical
results. s

Figure 2.12 shows the effect of two,successive rotations of 90° to an object
about the principal axes of the fixed frame. It is observed that the final orientation

of the object is different when same twc rotatlons are made but the order of
rotations is changed.

Lo ok

i

x L

Fig. 212 Effect of arderlaf rotations of a cuboid about principal axes of a fixed frame

-Similarly, the order of rotations about the principal axes of the moving frame
also produces different final orientation of the object. This is illustrated in

Fig. 2.13,
The representation of orientation of rotated frames for different types of

rotations is discussed next.
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““—\\ £
I Yn
z
QP ~ 2
SR Y RZI 90
>

X”

z YII

¥ v ia Rz, 90°
x 2 zh‘

XI
Fig. 213  Effect of order of rotations of a cuboid about axes of the moving frame

2.5.2 Fixed Angle Representation

Let the fixed frame {1)(frame {xyz}) and moving frame {2} (frame {u v w})be
initially coincident. Consider the sequence of rotations about the three axes of
fixed frame as shown in Fig. 2.14.

(i) First, moving frame {2} is rotated by an angle 6, about x-axis to frame
{27} as in Fig. 2.14(a). This rotation is described by the rotation matrix
R.(6)).

(ii) Next, the frame {2"} is rotated by an angle 6, about y-axis to give
frame {2"} as in Fig. 2.14(b). This rotation is described by the rotation
matrix R (6,).

(iii) Finally, it is rotated by an angle 6; about z-axis to frame {2} as in
Fig. 2.14(c). This rotation is described by the rotation matrix R (65).

(a) (b) ()
Fig. 2.14 Three rotations of 6,, 6,, and 6, about fixed axes

This convention for specifying orientation is known as fixed angle
representation because each rotation is specified about an axis of fixed reference
frame. The above three rotations are referred as XYZ-fixed angle rotations.
1
B
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The final frame orientation is obtained by composition of rotations with respect
to th'e ﬁxed frame and the overall rotation matrix ’R;_ is computed by pre-
multiplication of the matrices of elementary rotations, that is,

R..(0;0,6,)= 'R, =R,(0,)R,(6,)R,(6,)
(rotation ordering right to left)

Substituting the results of Egs. (2.54)—(2.56) in Eq. (2.59) for fixed angle
rotations, the final rotation matrix is

G -5, 01[c, 0 S,7[1 0 0O
R,.(0;0,0))=|S, ¢c; o|l[| 0o 1 o]0 ¢ -S§
L0 0 1][-S, 0 G,][0 § G
or Ry (6:0,0)) =| 0,y 555 +CC GSS; - SG (2.60)
| =5, 516G, ‘th_z

The final frame orientation for any set of rotations performed about the axes of
the fixed frame (e.g. ZYX, ZXZ etc.) can be obtained by multiplying the rotation

matrices in a consistent order as indicated in Eq. (2.59). In fixed angle
representation, order of rotations XYZ or ZYX are equivalent, that is,

R:J..z (9] 62 63) = RZ}‘I(91 92 93)

(2.59)

Z
03 ("| > Roll
@,
e
|
Y

Yaw o Kj

Pitch
&1
X

Fig. 2.15 Representation of roll, pitch, and yaw (RPY) rotations

The three rotations about the three fixed principal axes in fixed angle rotation
produce the motions, which are also known as roll, pitch, and yaw motions, as
shown in Fig. 2.15. The XYZ-fixed angle transformation in Eq. (2.60) is
equivalent to roll-pitch-yaw (RPY) transformation.

2.5.3 Euler Angle Representations

The moving frame, instead of rotating about the principal axes of the fixed frame,
can rotate about its own principal axes. Consider alternate rotations of frame {2}
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with respect to frame {1}, as shown in Fig. 2.16, starting_

from the positi
position Whey
the two frames are coincident. ' '

W’ / w
L] Z W w” .
% _yry~
{27} {2”}
U’ U” ; U ’: U
() ) (c)

Fig. 216 ' Euler angle representation for three rotations of 6, 6,, and 6,

(i) To begin with, frame {2} is rotated by an angle 6, about its w-axjg
coincident with z-axis of frame {1 }. The rotated frame is now {2’} and the
rotation is described by the rotation matrix R,,(6,).

(if) Next, moving frame {2’} is rotated by an angle 6, about v’-axis, the
rotated v-axis to frame {2”}. This rotation is described by the rotation
matrix R (6,).

(iii) Finally, frame {2} is rotated by an angle 8, about its u"’-axis, the rotated

u-axis to give frame {2). This rotation is described by the rotation
R,(6;).

- This convention for specifying orientation is called WVU-Euler angle
representation and is illustrated in Fig. 2.16(a), (b), and (c). Viewing each of
these rotations as descriptions of frames relative to each other, the equivalent

rotation matrix is computed by post multiplication of the matrices of the
elementary rotations as

(0,6,05) =

]R2r E'Rzu 2"R2
RW(BIJRU*(BQ)R“#@) (2.61)
(rotation ordering left to right)

The rotations are performed about the current axes of the moving frame {wvw}-

Using the results of Eqgs. (2 54)-(2.56), the resulting frame orientation or the
rotation matrix is

'H-'U u

1l

[C, =S, 0 C, 0 ;1ML 0 0

WM(B 5 63) = G 0 O 11 0 Gy —-S;

L0 0 1 =5 0 G ||o A

(GG 855G - ¢, C8C + 58

p R,.(0,8,0,) = CES?‘. S1528; + GG G885 - 5G (2.62)
L =5, $,C, GG, : '

Scanned by CamScanner



TrTe—

665

Coordinate Frames, Mapping, and Transforms

Itis f_Jbsclervcd that this result is exactly same as that obtained for fixed angle
!‘eprgscn.iat10n. Eq. (2.60), but the rotations about the fixed axes were performed
In opposite order. In general, three rotations performed about fixed axes give the

same 1_°mal orientation as obtained by the same three rotations performed in the
opposite order about the moving axes. Hence,

Ry:(050,6)) = R,,,(0,0,0,) =R}, (0,6, 05) (2.63)

Another nmst‘wulely used Euler angle representation consists of the so called
ZYZ representation for rotations about the axes of the current frame. The
sequences of elementary rotations corresponding to this representation are:

(1) A ‘:‘m‘(ign by angle 6, about the w-axis (or z-axis of the fixed frame), that
1s, N, (6)).

(i) The second rotation by angle 6, about the rotated v-axis, that is R,/(6,).
T.hesc two rotations are same as the previous case in Fig. 2.13.
(iii) Finally, a rotation of angle 6, about the rotated w-axis, that is R ,-(65).

The resulting rotation matrix is

R, (6,6,05) = 'R, = R (6,)R,/(6,)R,.(65)

[C =8 0][Cy 0 8 ][Cy =S5 O

={§ € 0[]0 1 0[Sy C; 0Of (269

(0 0 1][-S, 0 G |J[O O 1

(G005 ~ 818y ~C,C385 -~ 81C; €S,

56,0 +C8 <568 +6Cr 55, |
=56 S5 C;

]

The above Euler angle rotation matrix can also be obtained by rotations about
the fixed frame as: a rotation by angle 68; about z-axis followed by a rotation by
angle 6, about y-axis and finally a rotation angle 6, again about z-axis. The
reader should verify this.

In all, twelve distinct sets of Euler angles and twelve sets of fixed angles are
possible, with regard to sequence of elementary rotations. Other alternative Euler
angle representations are also in vogue. For each of these, the rotation matrix can

be found on similar lines.

254 Equivalent Angle Axis Representation

A third representation of orientation is by a single rotation about an arbitrary
axis. A coordinate frame can be rotated about an arbitrary axis k passing through
the origin of fixed reference frame {1}. The rotation matrix for this case is
obtained by viewing the rotation as a sequence of rotations of frame {2} (along
with k-axis) about the principal axes of frame {1}.

Consider frame {2}, initially coincident with frame {1}. Frame {2} is rotated
by an angle 6 about k-axis, in frame {1}, as shown in Fig. 2.17. The rotation of
frame {2} is decomposed into rotations about the principal axes of frame {1}.
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about the principal axes of frame 1} 5o il

he rotation of angle 6 is made about the keay:

n, by reverse rotations about the 3Xe:;

First, suitable rotations arc made
align the axis k with x-axis. Nlet. t
* (which is coincident with x-axis). The
frame {1}, k-axis is return

ed to its original location.
|

Fig. 217 Equivalent angle axis representation

These rotations are illustrated with the help of a vector P, initially in the
direction of k-axis, in Fig. 2.18.

" K
A P
a .
) e 08 ?
AT ol PRI )
- Fx“"“'-—n__ ,’/ __:_.."-':‘ \
e e A
| 1 RN W, E1 REERRMANE 1 [ ST WO,
2 ﬁ | e 1 f," Y
f R e :_~:_|_p—
f 7 _
|4 3 =

Fig. 2.18 Rotations of frame about k-axis

First, rotate the vector P (along with axis k and frame {2} of Fig, 2.17) by &0
angle —oabout z-axis such that this rotation causes the axis & to lie in xz-plane of
frame {1}. This rotation, marked as “1” in Fig. 2.18 and is written as

]R2 = RZ (—a) (2.65}

e, v.cctorff’ (alng with rotated axis k) is rotated about y-axis by an angle
so that axis k aligns with x-axis, rotation “2”, At the end of this rotation

'R, =R, (B) R, (-a) (2.66)

N.G e rotation “3” of angle O about the rotated axis k, which is rotation about
x-axis, is made. The resulting rotation matrix is then

|

|
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'Ry =R, (0) R, () R (~0) - (2.67)

Fma_]ly, th:e rotations “4” and “5” of —f and o are made about y- and z-axes,
l.fﬂSP?C“WcIY» Al tlhe OPposite sense and reverse order so as to restore the k-axis to
its original position leaving frame (2} in the rotated position. This gives

Ry = R(O) =R () R(-HRORPR(-0)  (268)

Substituting the values for the fundamental rotation matrices from
Egs. (2.54)-(2.56) gives,
Ca -Sa O1[CB 0 -SBI[1 0 0
Ry=|Sa ca o|lo 1 o |[|o co -se
L0 o 1]|lsg o cBllo se co
[ CB 0 SB[ Ca So 0]
0 1 0 —SO."l Ca 0 (2.69)
-sB o cBjl o o0 1

The affgfﬂs @ and f3 can be eliminated from Eq. (2.69) using the geometry.
From Fig. 2.18, following are easily observed for the unit vector

k=[k, &, &]

k k
2 ,COS 0L = =

2 2 [ 2 2
R, ke” K,
sin B=k,, cos f=/k,? +k,> 1 (2.70) ‘

Substituting these in Eq. (2.69) and simplifying gives
kiVO+CO . k., VO -k SO k.k VO +k,SO
'R, =Ry(0) = | k .k, VO +k,50  k;VO+CO  kyk,VO-k SO| (2.71)
kek,VO -k, SO kk,VO+ kSO k2VO+ CO

sin o =

A

where k,, k,, k, are the projections of a unit vector k on frame {xyz}, and
VO =1-cos 6.

This is an important rotation matrix and must be thoroughly understood. The
principal axes fundamental rotations can be obtained from Eq. (2.71). For
example, if k-axis is aligned with z-axis, R;(6) becomes R (6) with k, =k, =0
and k, = 1. Substituting these ky, k,, k, in Eq. (2.71) gives

ce -S6 0
R(®)=R(6)=|50 C6 0O (2.72)
| T O

which is same as Eq. (2.54) derived before.
Note that any combination of rotations about the principal axes of a coordinate

frame is always equivalent to a single rotation by some angle 6 about some
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arbitrary axis k. To find the direction K, consider the general rotationg
transformation matrix R of Eq. (2.32). It is required to determine 6 and f
Equating Eqgs. (2.32) and (2.71), one gets nine equations in four unknowns kx,_ k}_,
k., and 6, which can be casily computed (see Review Question 2.21). .

The concepts of transformation developed in this chapter will bt? required fo,
analysis of manipulators for various aspects of robotics covered in rest of the
chapters. To enharice the understanding, several examples are worked oy
involving different concepts of transformations. '

' SOLVED EXAMPLES -

Example 2.1 Use of Transformations

The coordinates of point Pin frame {1} are[3.0 2.0 l.O]T.The position vector
P is rotated about the z-axis by 45°. Find the coordinates of point Q, the new
position of point P. '
Solution The 45° rotation of P about the z-axis of frame {1} from Eq. (2.54) is
| cos45° —sin45° 0] [0.707 —0.707 0
R, (45°) =|sin45° cos45° 0|=|0.707 0.707 0| (2.73)
0 0 1 0 0 1
For the rotation of vectors, Eq. (2.37) gives
'0 =R, (45°) 'P |
Substituting values of R, and p,
| 0.707 -0.707 07[3.07 [0.707
'0=10.707 0.707 0|[2.0|=|3.535 (2.74)
0 0 1] |10 1
Thus, the coordinates of the new point Q relative to frame {1} are

[0.707 3.535 1.0]" or the new position vector is

Q =[0.707 3.535 1.0]" (2.75)

Example 2.2 Homogeneous Transformation

Frame {2} is rotated with respect to frame {1} about the x-axis by an angle of
60°. The position of the origin of frame {2} as seen from frame {1} is
“D2 =[7.0 5.0 7,0]T. Obtain the transformation matrix lSn"z, which describes
frame {2} relative to frame {1}. Also, find the description of point £ in frame {1}
if 2P =[2.0 4.0 6.0]".

Solution The homogeneous transform matrix describing frame {2} with respect
to frame {1}, Eq. (2.29), is

1
|
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| g
R i D
1 2 2
N TS Ll
’ [0 0 0 1]

{2} is rotated relative to frame {1} about x-axis by 60°,

Because frame
Eq. (2.55) gives

1 0 0 1 0 0

1

Ry=10 cos60° -sin60°|=|0 0500 -0.866| (2.76)
0 sin60° cos60° 0 0.866 0.500

. " l .
Substituting "R, and 1D2 in the above equation

000 O §7,0007
0 0.500 -0.866 ! 5.000

|
T, = : 277
"7 [0 0866 0.500 {7.000 @70
« w sl 011
~ g !
Jiven: P =[2.0 2.0 6.0]", point P in frame {1} is given by
1P= ]T2 ZP
Substituting values . :
L. «f.- 0 7.0007 2.0 "9.000 T
1, |0 0500 -0.866 5.000||4.0| | 1804 | _
P=| _ = (2.78)
0 0.866 0.500 7.000 (6.0 13.464
6o 0 0 1 1 1
or 'P=19.000 1.804 13.464 117 (2.79)

The 3 x 1 position vector of point P in frame {1} in physical coordinates is
then

1P =[9.000 1.804 13.464]7 (2.80)

Example 2.3 Transformation of Vector and Frames

Consider a point P in space. Determine the new location of this point after rotating
it by an angle of 45° about z-axis and then translating it by —1 unit along
x-axis and -2 units along z-axis. Pictorially show the transformation of the vector.
What will be the equivalent frame transformation for this vector transformation?
Show the transformation of frames.

. . .. Ly -
Solution  Figure 2.19 shows a point P and a vector from origin as "P in frame
{1} and its new location after the rotational and transnational transformation as

Q. The relation between '@ and 'P is described by Eq. (2.26) as

lg=T'P

R@B) D
Whefﬂ T=]|eenee .,
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[ z - 1
\ T =4 =< -2
i TP Y S 45° G S - 1y
T e, | _m_____:.“‘-'—'_"_ Q
{1] ‘|P 10
ol
O
X
Fig. 2.19 . Transformation of point P in space
Substituting values gives ‘ !
[cos45° —sina5® o -1] . [0.707 -0.707 0 ~I]
in 45° ks 0.707 0707 0 O .
10 = sin45 cosl45 0 0 Ip— g . Ip 2.81)
0 0 1 -2 0 0 L=2
L 0 0 0 1] . 0 0 0 1,

The transformation in Eq. (2.81) can be regarded as transformation of two
frames {1} and {2}. Assuming frame {1} and frame {2} to be initially coincident,
the final position of frame {2} is obtained by translating it by +2 units along
z,-axis (motion 1), and +1 unit alongx;-axis (motion 2) and then rotating it by an
angle of —45° about z,-axis (motmn 3). The two frames are shown in Fig. 2.20.

w
A

(2}

Fig. 2.20 Transformation of frames corresponding to transformation of vectors
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Example 2.4 Description of Frames

In E_x.amplc 2-2,‘ the tl:ansfnrmation matrix 'Tz was obtained, which describes the
P051“°'_1 and onent:}nc‘m of frame {2} relative to frame {1}. Using this matrix,
determine the description of frame {1} relative to frame 2. :

Solution 'I;hf’ POngeneous transformation for describing frame {1} relative to
frame {2}, °T is given by

2 12!
i el R
The inverse of ! T, is given by Eq. (2.53), that is,
7, "___?Ezf_;___i__—_‘f__f;i_‘?_z}
KON i o it
From 'T; in Example 2.2, Eq. (2.77),
| _ B i
'Ry=]0 0500 -0.866 |
©o L0 0866 0.500 |
and 'D,=[7.0 50 7.0]
L Bt o
Hence, R, ='"RT=[0 0500 0866 o (2.83)
0 —0.866 0.500

and the position of the origin of frame {1} with respect to frame {2} is given by
ZD at —lR T lD
=y A
Substituting values
1 0 0 7.0 -7.000
D, =-|0 0.500 0.866||5.0]|=|-8.562 (2.84)

0 -0.866 0.500] 7.0 0.830
Therefore,
(1 0 0 =7.0007
2T1= 0 0.500 0.866 —8.562 (2.85)
0 -0.866 0.500 0.830
K 0 0 l

Example 2.5 Euler Angle Rotations

In Euler angle rcprcscnlilti(ln, the equivalent rotation matrix relating the two
frames is specified by a set of ZYX-Euler angle rotations. Consider now the
inverse of this problem: Given the rotation matrix "R,, relating the orientation of
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frame {2} with respect to frame {1}. Determine the corresponding set of

ZYX-Euler angle rotations.

Solution Let the given rotation matrix which specifies the orientation of

frame {2} with respect to frame {1} be

o 2 N3
'Ry=|ry m M (2.86)
By 32 133
Thc equivalent rotation matrix for a set of ZYX-Euler angIe rotation (6, 6, 6 )
is given by Eq. (2.62), _. |
'R, =| C,8y 55,5 +GG —SC + G55 (2.87)
_Sz SIC2 . : Cl C2 P
Equating the corresponding elements of these matrices gives nine equations in
three independent variables, 6,, 6,, 6;. Apart from the redundancy in equations,
additional complication is that these are transcendental in nature.
Equating elements (1,1) and (2,1) in Eq (2.86) with corresponding elements in
Eq. (2.87) gives, _

C,C5 =ry; and Czs:s =1y
Squaring and adding gives

C"J = CO0s8 62 = -\J.’i] + r212 | {288)

Combining with the element (3,1), (=S, = r3;), the angle 6, is computed as: -

S

tan 6, =
2

0; = Atan2(-ry, £n,2 +5,%) (2.89)

where Atan2(a, b) is a two-argument arc tangent function (see Appendix A).
The solution for 8, and 8; depends on value of 8,. Here, two cases arise which
are worked out as follows:
Case 1 0, #90°
From the elements (1,1) and (2,1) in Egs. (2.86) and (2.87), 6; is obtained as

which gives

By
9 =At' 2 ey e 290
? o {C'z G, } =
and from clements (3,2) and (3,3), 6, 1s
o)
0, = AtdnE[ ii} (2.91)
C2 C2

Note that there is one set of solution corresponding to each value of 6,.

4
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Case 2 6, = £ 90°
For 6, = 190°, the solution obtain
possible to find only
(1,2) and (2, 2)

ed in Case 1 degencrates. However, it is
the sum or difference of 6, and 6,. Comparing clements
"12=5,5C; - C,S$,
and Tp=S5,8+ 0 ™ ' (2.92)
If 8,=+ 90°, these equations reduce to ' ol
F12 = sin (6, - )

¥y :
=cos (6, - 6;) : RTINS T
and 0, - 6; = Atan2 (ry2, Fa2) "\ (2.93)
Choosing 6; = 0° gives the particular solution _ :
6, = 90°; 6, =0° and 6, = Atan2(ryy, ry,) (2.94)

With 8, = - 90°, the solution is
r12 = —sin (6[ + 62)
I'yp = cos (6, + 6,)

and 6) + 8, = Atan2 (- ry,, 1) (2.95)
Choosing 6, = 0° gives the particular solution
6, = —90° 6, =0° and 6, = Atan2(~ ry,, r5,) (2.96)

Example 2.6 Multiple Rotations of a Frame

Frame {1} and {2} have coincident origins and differ only in orientation.
Frame {2} is initially coincident with frame {1}. Certain rotations are carried out
about the axis of the fixed frame {1}: first rotation about x-axis by 45° then about
y-axis by 30° and finally about x-axis by 60°. Obtain the equivalent rotation
matrix 'R,. padl

Solution Rotations are in order X-Y-X about the fixed axes; hence, it is a case of
fixed angle representation. Therefore,

'R, =R, (60°) R, (30°) R, (45°) ' (2.97)
or _
1 0 0 cos30° 0 sin30°] [1 0 0
lR», = [0 cos 60° —sin 60° 0 1 0 0 cos45° —sin45°
) |ﬁ sin60° cos60° [|—sin30° 0 cos30°| |0 sin45° cos45°
On multiplication,

0.866 0354 0.354
'R, =[0.433 -0177 -0.884 (2.98)
-0.25 0919 0.306

The reader must verify that the same orientation could have been obtained by
performing the same rotations about the moved xyx-axes of the moving frame but
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- e XYX-Euler agor.
in the opposite order. This convention is also referred as XYX: _ _E}Ilg_lp? :

representation.

Example 2.7 Equivalent Axis Representation
Two coordinate frames {1} and {2} are initially coincident. Frame {2} is rotated

by 45° about a vector k = [0.5 0.866 0. 707)" passing through the origjy,
Determine the new deqcnptmn of frame {2}.

Solution  Substituting k and 8=45° in Eq. (2.71) yields the rotatlon matrix IR
for rotation about k-axis as

0.780 -0.373 0.716
R(45°) = 'R,=| 0.627 0927 -0.174 (2.99)
~0.509 0.533 0.854

Since there is no translation of frame {2}, the position ve:ctor isD=[0001)
and the description of frame {2} with respect to frame {1} 1s:

- 0.780 -0.373 0.716 0]
7 —0174 0
p, 0627 0927 -0.1 .10
| ~0509 0533 0854 0
0 .0 0 1]

Example 2.8 Screw Transformation

The moving coordinate frame {u v w} undergoes a “screw transformation”, that
is, it is translated by 4 units along z-axis and rotated by an angle of 180° about
same axis of stationary reference coordinate frame {x y z}. Coordinates XYZ and
UVW are initially coincident.
(a) Obtain the homogeneous transformation matrix for the screw
transformation.
(b) Show the coordinate frames before and after the transformation.
(c) If the order of transformations is reversed, will the homogeneous screw
transformation matrix change?
Solution (a) In screw transformation the moving frame is translated and rotated
about same axis. The overall transformation ma_trix for the given situation is

T'=T(z, m) T (0,0, 4)

Sl 0 0Y0TL 0 0 0] =140 0 O
lo -toofo 1 oo |0 -100

= =10 o0 10lo 01 4[lo o 1 4f @100
0o 0 0o1fooo 1] lo 0o o 1]

Assume a unit vector along y-axis. This is given by p = [0 1 0]’. This vector

moves with the moving frame and undergoes the two transformations specified.
Its position after given translation and rotation will be ‘

a
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-1 0 0 001 o071
0 -1 0 off1] |-1
P'=TP= = ; 102

0 0 1 4f0 4 (21l0)
0L 0, 8 ad k- L

- (b; ';1& initial and final positions of two frames and point P are is shown in
g 221, ;

\ : X, U
, Fig. 2.21 Screw transformation of point P. .

(c) If the order of transformations is reversed, that is, rotation followed by ‘
translation, the overall transformation matrix will not change. This can be easily
verified by the reader and is the property of screw transformation. ‘

| EXERCISES =~

2.1 The coordinates of point P with respect to a moving coordinate frame are

given as P=[0.5 08 13 117. What are the coordinates of P with
respect to fixed coordinate frame, if the moving frame is rotated by 90°
about z-axis of the fixed frame?

2.2 Determine the rotation matrix fora rotation of 45° about y-axis, followed
by a rotation of 120° about z-axis, and a final rotation of 90° about x-axis.

2.3 A vectorP= 3f <2 f + 5 is first rotated by 90° about x-axis, then by 90°

about z-axis. Finally, it is translated by “3i+2 ; — 5k. Determine the new
position of vector y

2.4 Find the new location of point G, initially atG = 3 G =l N7, if (i) itis
rotated by 7 about z-axis and then translated by 3 units along y-axis, and
(ii) it is first translated by 3 units along y-axis and then rotated by about
z-axis. Are the two locations same? Explain why the final position in two
cases is same or different. -
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x-axis of the fixed coordinate frame b ’
0 in fixed coordinate frame 5y,

2.5 A moving frame is rotated about x-a7
/6 radians. The coordinates of a point - .
given by @ =[2 0 3]7. What will be the coordinates of a point Q wig

respect to the moving frame?

2.6 Show that determinant of the 10 di tem
coordinate system and -1 for a left-hand coordinate system.

2.7 The end-effector of a robot is rotated about fixed axes.starting'with a yaw
of -2, followed by a pitch of —7/2. What is the resulting rotation matrix9

2.8 A vector C with respect to frame {b} is"C =[2 4' _Sa] " If frame (b} 5
rotated by —7/4 about x-axis of frame {a}, determine c .

2.9 If vector C in the above exercise is also translated by 4 units in -y directiop
in addition to rotation, determine “C. _

2.10 The end-effector holds a tool with tool tip point P having coordinates
P =1[0 0 1.2]". Find the tool tip coordinates with respect to a fixed
coordinate frame at the base, if the end-effector coordinates are given by
Bi..(2.31).

.11 A point Q is located 8 units along the y-axis of moving frame. The mobile
frame, initially coincident with the fixed frame, is rotated by 7/3 radians
about the z-axis of fixed frame. Determine the coordinates of point Q in
fixed coordinate frame. What are physical coordinates of point Q in fixed

coordinate frame? S
2.12 The end-effector of a manipulator is a gripper. The gripper is relocated

from initial point[2 0 4 1]" to[4 0 O 1]" . Determine the direction
of axis k and the angle of rotation about this k-axis.

2.13 Show that a rotation by 8 about axis k (Eq. (2.71)) can be used to get the
fundamental rotation by choosing axis k to be axis x- or y- or z-axis,

respectively.
2.14 An end-effector is rotated by 60° about an axis whose unit vector is

e SRS il

tation matrix R, is +1 for a right-hapq

[

~ T 3 L
k:[lf«@_ /42 1 1] . Find the homogeneous transformation matrix

representing this rotation.

2.15 The end-point of a link of a manipulatorisat P = [2 2 6 1]7. The link
is rotated by 90° about x-axis, then by —180° about its own w-axis, and
finally by —90° about its own v-axis. Find the resulting homogeneous
transformation matrix and the final location of end-point.

2.16 For a rotation of 90° about z-axis followed by a rotation of 90° about
y-axis followed by a rotation of 90° about x-axis, determine an equivalent
k-axis of rotation and rotation angle 6 about this axis.

2.17 Determine the transformation matrix 7T that represents a translation of a
unit along x-axis, followed by a rotation of angle ar about x-axis followed
by a rotation of @ about the rotated z-axis. :

2.18 Two frames, {A} and {8}, are initially coincident. Frame {B} undergo®s
the following four motions in sequence with respect to axes of frame {A}

bt e e L i
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(1) A rotation of 6 about z-axis,

(ii) A translation of d along z-axis,

(iii) A translation of @ along x-axis, and finally

(iv) A rotation of o about x-axis.

Determine the final homogeneous transformation matrix to describe
frame {B}), after the transformations, with respect to the frame {A}.

2.19 The homogeneous transformation matrices between frames {i}-{j} and
{i}—{k} are: :

0866 0500 0 117 1 0, 0 0

. 0.500 0. 0 - : 0. 10
s 0866. 0 1| ;. [0 0866 0500 10| )0

0 0 18 ! 0 0.500 0866 20

gl ¢ g igin g | g v b gt s 1]

Determine /T,
2.20 Show that the inverse of the homogeneous transformation matrix with no
perspective transformation, that is, if T is

4.

n

]
0

X X X X
r-|™. % % d, _[m o a d], - (2.104)
n, o, a, d, 0 0 0 1
L0 0 0 1]

T~ is given by

n, n, n, -d-n]

7-1_ 0o, o, o, —d-o (2.105)
a;. Gy a; .—d-a
0 0 0 1

2.21 Fora given equivalent rotation matrix R, show that the equivalent angle of
rotation @ about k-axis and the direction of axis k are given by

nythy tr)-1
3:(:05‘1[(“ 5 +133) ]
2
ky { P — I
= Fia = I (2.106)
Y 2sing | 2
> Hhy — ha

where r;; are the elements of the known 3 x 3 orientation matrix R,

h M2 N3
-
R=|r 1 M (2.107)
B I 3

Assume that sin 8#0
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2.23

2.24

2.25

2.26

2.27

2.28

Robotics and Control - : —\\?‘
The rotation matrix ' R,, relating the orientation of frame: {2} with mspec[__‘ié
to frame {1} is given by ' ' 1

0.87 -043 0.25 ..
'R,={050 0.75 —0.43 s - (Q2u10g)
0 050 087
Determine the corresponding set of ZYX-Euler angles
If the rotation matrix 'R, in Exercise 2.22 corresponds to the fixed angle
rotations, determine the corresponding set of roll, P!t'Ch’ and yaw angles,
Ina roll-pitch-roll convention, roll stands for rotatl?n (9) about Z-axis,
pitch for rotation (A) about new y-axis, and roll again (&) about neyw 7

axis. The roll-pitch-roll geometry can be repl'ﬂs‘im-"*‘d PY Euler angleg,
Show that the overall rotation matrix Kgpg (6, A, @) is given by

CSCALCo-S6Sae —COCASax—-S6Ca C§s)

‘Rypr (8,4 0)= | S6CACax +CE St =SS CASax + CéCor  §§ §),
-SACa ' SASa CA

(2.109)

where C6 = cosd,CA = cosA, Ca = cosa, S6 = sin 8, SA = sin A,
and S¢t = sina. ' '

A frame is given two rotations, one about x-axis by 60° and one about y-
axis by 45°. Show that R, R, # R, R,. Explain why.

Determine the orientation matrix for

(a) ZXZ fixed angle rotations.

(b) ZXZ Euler angle rotations.

For the rotations about an arbitrary axis k, show that

R_,(-6) = R, (0) . (2.110)
that is, the rotation by angle -0 about —k-axis produces the same effect as

those of a rotation by angle 6 about k-axis.

Show that the Euler angles 6,, 6,, and 93' in Eq. (2.64) can be computed
for a known rotation matrix

M M2 ha
R=|nry m (2.111)
B I I

as

6, = Atan2(ry, ni3)

6, = A tan E(Whﬁ + 3 -"9-3) (2.1 12)

6y = Atan 2(ry5,-ry,)
in the range 0 € 6, < 7,

A s e 7 A Db v L

i
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2.29 A point P is moving with a uniform velocity 2y =[12 5 25]' relative to
frame{2}. If the transformation of frame {2} to frame {1} is given by

ENEs 0 6
0 0.866 -0.500
lp o 0.500 10 2.113)
0 0.500 0.866 =20
0 0 0 1]
.. compute 'v.
2.30 Explain why homogeneous coordmateq are required in modeling of robotic
manipulators.

2.31 Explain why homogeneous transformations are requlrcd in modeling of
robotic manipulators.

2.32 What are global and local scale factors? When theqc are useful? Give one
situation each where global scale factor is less than one and more than
one. 4 o ;

233 What do you understand 'by screw transformations? Where these
transformations can be useful?

2.34 What are fundamental rotation matrices? Obtain the three fundamental
rotations matrices for rotations about axes x, y and z from the rotation
matrix for rotation about an arbitrary axis k.

. BIBLIOGRAPHY =

1. J. Denavit and R.S. Hartenberg, “A Kinematic Notation for Lower-Pair
- Mechanisms Based on Matrices,” ASME J. of Applied Mechanics, 215-
- 221, Jun 1955.

2. A.J. Laub and G.R. Shiflett, “A linear algebra approach to the analysis of
rigid body displacement from initial and final position data,” J. Appl.
Mech., 49, 213-216, 1982. , . .

3. R.J. Schilling and H. Lee, Engineering Analysis: A Vector Space
Approach, Wiley, New York, 1988. -

4. D. VanArsdale, “Homogeneous Transformation Matrices for Computer
Graphics,” Computers & Graphics, 18(2), 177-191, 1994.

5. D.E. Whitney, “The Mathematics of Coordinated Control of Prosthetic
Arms and Manipulators, “ASME J. of Dynamic Systems, Measurement
and Control, 94, 303-309, 1972,

Scanned by CamScanner



N W St - S—— - e 4
LR ‘.' ey S r.-!-;_-r-v"‘. 'y f Sk A ST :—WT..___r:I:r:"-:g.'.'._-.?_ﬂ:'_t'!rg-'_l-.!:-j‘\f o, T o

A robotic manipulator is designed to perform a task in the 3-D space. The tool

or end-effector is required to follow a planned trajectory to manipulate
objects or carry out the task in the workspace. This requires control of position of
each link and joint of the manipulator to control both the position and orientation
of the tool. To program the tool motion and joint-link motions, a mathematical
model of the manipulator is required to refer to all geometrical and/or time-based
properties of the motion. Kinematic model describes the spatial position of joints
and links, and position and orientation of the end-effector. The derivatives of
kinematics deal with the mechanics of motion without considering the forces that
cause it. The relationships between the motions and the forces and/or torques that
cause them is the dynamics problem.

In designing a robot manipulator, kinematics and dynamics play a vital role.
The mathematical tools of spatial descriptions developed in the previous chapter
are used in the modeling of robotic manipulators. The kinematic model gives
relations between the position and orientation of the end-effector and spatial
positions of joint-links. The differential kinematics of manipulators refers to
differential motion, that is, velocity, acceleration, and all higher order derivatives
of position variables. The problem of completely describing the position and
orientation of a manipulator, the kinematic model, is considered in this and the
next chapter. The velocities and accelerations associated with motion would be
discussed in Chapter 5 and the forces/torques which cause the motion in
Chapter 6.

1
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Symbolic Modeling of Robots—Direct Kinematic Model gﬁd

3.1 MECHANICAL STRUCTURE AND NOTATIONS

The anatomy of the manipulator was discussed in Chapter 1. A manipulator
consists of a chain of rigid bodies, called /inks, connected to each other by joints,
Wh‘f:h. 31}‘3“’ linear or revolute motion between connected links each of which
exhibits just one degree of freedom (DOF). Joints with more than one DOF are
not common. A joint with m degrees of freedom can be modeled as m joints with
one degree of freedom each-connected with (m-1) links of zero length. Most
industrial robotic manipulators are open serial kinematic chains, that is, each link
is connectcd_to two other links, at the most, without the formation of closed loops.
In open chain robots, all joints are motorized (active). Some robots may have
closed kinematic chains such as parallelogram linkages and require different
considerations to model them.

The number of degrees of freedom a manipulator possesses is the number of
independent parameters required to completely specify its position and orientation
in space. Because each joint has only one degree of freedom, the degrees of
freedom of a manipulator are equal to number of joints.

Link {f-:)/

G —t=ap
< XL
\ soxisof rolation

(a) Revolute joint (b) Prismatic (sliding ) joint

Axis of translation

Fig. 3.1 Two common types of joints and axis of motion (joint axis)

Single DOF joints between links of a manipulator can be classified as revolute
or prismatic. A revolute joint, denoted as R-joint, allows rotational motion
between connected links. A prismatic joint, denoted as P-joint, also known as
sliding or rectilinear joint, permits translational motion between the connected
links. Each joint has a joint axis with respect to which, the motion of joint is
described, as shown in Fig. 3. 1. In the case of revolute joints, the axis of relative
rotation is the joint axis. For the prismatic joint, the axis of relative translational
motion is the joint axis. By convention, the z-axis of a coordinate frame is aligned
with the joint axis. '

The links of a manipulator are numbered outwardly starting from the immobile
base as link 0, first moving body as link 1. to the last link out to the free end as
link n. Link n is the “tool” or “end-effector”. The joints arc numbered, similarly,
with joint 1 between link 0 and link 1 and so on, out to the joint n between link
(n—1) and link n. The numbering scheme for labelling links and joints is shown in
Fig. 3.2 for a 3-DOF manipulator arm which is an open serial kinematic chain of
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rigid bodies having three revolute joints. Thus, an n-DOF manipulator arm
consists of (n+1) links (including link 0) connected by # joints.

Joint 3
I" Link 3

— (-}
Link 0 — r
(Base)

Joint 1

/{ . x

Fig. 3.2 A 3-DOF manipulator arm—numbering of links and joints

Description of an object in space requires six parameters—three for position
and three for orientation. To position and orient the end-effector in 3-D space,
therefore, a minimum of three degrees of freedom are required for positioning and
three degrees of freedom for orientation. Typical robotic manipulators have five
or six degrees of freedom. A manipulator is considered to be consisting of an arm
with typically first three links from the base and awrist with the remaining 2 or 3
links. The arm accomplishes the task of reaching the desired position, whereas
the wrist helps to orient the end-effector.

3.2 DESCRIPTION OF LINKS AND JOINTS

The n-DOF robotic manipulator is modelled as a chain of rigid links inter-
connected by revolute and/or prismatic joints. To describe the position and
orientation of a link in space, a coordinate frame is attached to each link, namely,
frame {i} to link /. The position and orientation of frame {1}, relative to previous
frame {i-1}, can be described by a homogeneous transformation matrix as
discussed in the previous chapter.

In this section, the parameters required to completely specify the position and
orientation of links and joints of a manipulator are discussed. Every link of the
manipulator is connected to two other links with joints at either end, with the
exception of the base and the end-effector, the first and the Jast link (recall that
immobile base is link 0), which have only one joint. Figure 3.3 shows link i of a
manipulator with associated joint axes (i=1)and i.

From a geometric viewpoint, the link defines the relative position and
orientation of joint axes at its two ends. For the two axes (i—1) and i, there exist a
mutual perpendicular, which gives the shortest distance between the two axes.
Thisshortest distance along the common normal is defined as the link length and
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is denoted as a;. The angle between the projection of axis (i-1) and axis i, on a

plane perpendicular to the common normal AB, is known as the link twist and is

denoted by ¢;. The link twist @; is measured from axis (i—1) to axis i in the right-
hand sense about AB as shown in Fig. 3.3.

 HE
2 . g

Fig. 3.3 Description of link parameters a; and ¢;

These two parameters, a; and ¢; are known as link parameters.and are constant
for a given link. For industrial robots, the links are usually straight, that is, the
two joint axes are parallel, giving link length equal to physical link dimension and
link twist equal to zero. Another common link geometry is straight link with link
twist angle as multiple of 7/2 radians. Sometimes, the link may have a bend such
that the axis of joint (i—1) and joint i intersect and in this case the link length of
link i is zero although physical link dimension is not zero. Figure 3.4 shows a
straight link with link twist of 7/2 radians.

Link i —— i
/% \* i /!Joimsﬂ
Joint @——» | | / ( 65 .-
s

; :

Zi_4

aj “F

Link length = a;
Link twist = of

Fig. 3.4 Link parameters for a straight link with a twist of 90°

For two links connected by either a revolute or a prismatic joint, the relative
position of these links is measured by the displacement at the joint, which is either
joint distance or joint angle, depending on the type of joint. Joint distance (d,) is
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) o 10 Eor R onnormalsa. and.
the perpendicular distance between thctwoad_]acentcon‘fﬁl Qrinesd, anda].
istance is the translation neeg, q

measured along axis (i-1). In other words, jointdi . Sy i

along joint axis (i~1) to make a;_, intersect with ¢;. Joint aqgle (ﬁ f'),'s *he'angle
between the two adjacent common normalsa;_ anda;, .mf:asure:d mn right-handeg
direction about the axis (i—1). It is the rotation about er!t axis (i—1) needeq o
make a;_; parallel toa,. These two parametcrs arc called joint parameters and gr,

shown in Fig. 3.5.

Axis (i—1)
Joint 7 o
- A/’szs:
Tk i Joint (i+1)
e &
///_____,ﬁ—
et ”f:rrL/
T AR
] T" ) f
f‘; _H_ﬂ__:t‘k-"
AT
Jo

Fig. 3.5 Description of joint-link parameters for joint i and link i

A 1-DOF joint requires only one variable to describe its position. Thus, for
every 1-DOF joint, it will always be the case that one of the two joint parameters
(6; and d)) is fixed and the other is a variable. The displacement of a joint is
measured by either angle 6, or distance d; depending on the type of joint. The joint
displacements for a revolute and prismatic joints are shown in Figs. 3.6(a) and
(b), respectively. ' ' : -

Link i—1
— Link i

P 2z

e

d; = 0 or constant 6; = 0 or constant
(a) For revolute joint (b) For prismatic joint

Fig. 3.6 Joint parameters 6; and d; for two types of joints

For a revolute joint, d; is zero or constant and 6, varies, while for a prismatic
joint 8, is zero or constant and d; varies, describing the relative position of links.
The varying parameter is known as joint variable and a generalized parameter ¢
is used to denote the joint displacement (variable) of either type of joint, The
generalized joint displacement variable is defined as
Scanned by CamScanner
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g {9;, if joint i is revolute
Y g if joint 7 is prismatic.

3.3 KINEMATIC MODELING OF THE MANIPULATOR

With the definition of fixed and variable kinematic parameters for each link,
kinematic models can be defined. This model is the analytical description of the
spatial geometry of motion of the manipulator with respect to a fixed (inertial)
referenc; frame, as a function of time. In particular, the relation between the
joint-variables and the position and orientation of the end-effector is the kinematic
model. It is required to control position and orientation of the end-effector, in 3-D
space, so that it can follow a defined trajectory or manipulate objects in the
workspace. The kinematic modeling problem is split into two problems as:

1. Given the set of joint-link parameters, the problem of finding the position
and orientation of the end-effector with respect to a known (immobile or
inertial) reference frame for an n-DOF manipulator is the first problem.
This is referred to as direct (or forward) kinematic model or direct
kinematics. This model gives the position and orientation of the end-
effector as a function of the joint variables and other joint-link constant
parameters.

2. For a given position and orientation of the end-effector (of the n-DOF
manipulator), with respect to an immobile or inertial reference frame, it is
required to find a set of joint variables that would bring the end-effector in
the specified position and orientation.

This is the second problem and is referred to as the inverse kinematic
model or inverse kinematics.

The problem of manipulator control requires both the direct and inverse
kinematic models of the manipulator. The block diagram for both the models is
illustrated in Fig. 3.7, wherein the commonality is the joint-link fixed and variable
parameters. The task to be performed by a manipulator is stated in terms of the
end-effector location in space. The values of joint variables required to
accomplish the task are computed using the inverse kinematic model. To find the
location of end-effector in space, at any instant of time, the joint variable values
are substituted in the direct kinematic model. This chapter addresses the problem
of formulation of direct kinematic model. The inverse Kkinematic model
formulation will be discussed in the next chapter.

For kinematic modeling, frames are assigned to each link of the manipulator
starting from the base to the end-effector. The homogeneous transformation
matrices relating the frames attached to successive links describe the spatial
relationship between adjacent links. The composition of these individual
transform matrices determines the overall transform matrix, describing tool frame

with respect to base frame.
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Fig. 3.7 The direct and inverse kinematic models

3.4 DENAVIT-HARTENBERG NOTATION

The definition of a manipulator with four joint-link parameters for each link and a
systematic procedure for assigning right-handed orthonormal coordinate frames,
one to each link in an open kinematic chain, was proposed by Denavit and
Hartenberg (1955) and is known as Denavit-Hartenberg (DH) notation. This
notation is presented in this section and followed throughout the text.

A frame {i} is rigidly attached to distal end of link i and it moves with link i.
An n-DOF manipulator will have (n + 1) frames with the frame {0} or base frame -.
acting as the reference inertial frame and frame {n} being the “tool frame”. :

s (1-2) | -

ke is (i — :

Joint (i=1) Joint i Axis
} ' - o Joint (i + 1)

A : a'._m’\\__ B, v, D
'g\\\\ a- 1 (] h // /'
\ \ 74 I El
o | ] et
-1 }.\Za,-
| S Xi-1

Fig. 3.8 DH Convention for assigning frames to links and identifying joint-
link parameters
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Figure 3.8 shows a pair of adjacent links, link (i-1) and link i, their associated
joints, joints (i-1), i and (i+1), and axes (i-2), (i~1), and i, respectively. Line AB,
in the figure, is the common normal to (i-2)- and (i~1)-axes and line CD is the
common normal to (i-1)- and i-axes. A frame {i} is assigned to link i as follows:

(i) The zpaxis is aligned with axis i, its direction being arbitrary. The choice
of direction defines the positive sense of joint variable 6. ;

(ii) The x;-axis is perpendicular to axis z;_; and z; and points away from axis
Zi» that 18, x;-axis is d1rected along the common normal CD.

(iii) The origin of the i™ coordinate frame, frame {i}, is located at the
intersection of axis of joint (i+1), that is, axis {, and the common normal
between axes (i~1) and i (common normal is CD), as shown in the figure.

(iv) 1{35_1}13.11)!, y;-axis completes the right-hand orthonormal coordinate frame |

i}.
Note that the frame {i} for link i is at the distal end of link i and moves with the
link. . :
With respect to frame {i-1} and frame {i}, the four DH-parameters — two
link parameters (a;, o;) and two joint parameters (d;- 9) — are defined as:

(a) Link Length (g;) — distance measured along x-axis from the point of

intersection of x;-axis with z;_,-axis (point C) to the origin of frame {i},
~ that is, distance CD.
- (b) Link twist (o)) — angle between z, ;- and z;-axes measured about x;-axis

in the right-hand sense.

(c) Joint distance (d;) — distance measured along z;_,-axis from the origin of
frame {i-1} (point B) to the intersection of x axis with z; ;-axis (point
(), that is, distance BC.

(d) Joint angle (8;,) — angle between x;_i- and x;-axes measured about the
z;_;-axis in the right- -hand sense.

The convention outlined above does not result in a unique attachment of frames
to links because alternative choices are available. For example, joint axis i has
two choices of direction to pointz;-axis, one pointing upward (as in Fig. 3.8) and
other pointing downward. To minimize such options and get a consistent set of
frames, an algorithm is presented below to assign frames to all links of a
manipulator.

,' -hlgnﬁthm 31 > Link_Frame'Assignment'

‘This algorithm assigns frames and determines the DH-parameters for each link of
an n-DOF manipulator. Both, the first link O and the last link n, are connected to
cmly one other link and, thus, have more arbitrariness in frame assignment. For .
this reason, the first (frame {0}) and the last (frame {#}) frames are assigned after
assigning frames to intermediate links, link 1 to link (n-1). ' :
The dlsplacement of each Jomt-lmkl is measured with respect to a frame,
therefore the zero position of each link needs to be clearly defined. The zero
posmon fora fﬁVﬁl}llB Jomt is when the _|umt angle 6 is zero, while for a prismatic -
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Jmnt itis when thc _|mm dlsplacement is mini mal it may or may not be zero When

~ all the joints are in zero position, the manipulator is said to be in home | pr)srrton i

F Thus, the home position of an n-DOF manipulator is the position where the nx 1"

~vector of joint variables is equal to the zero vector, thatis, g, =0fori=1,2, ... n'
Before assigning frames. the zero position of each joint, that is, the home position
of the manipulator must be decided. The frames are then assigned imagining the
manipulator in home position.

~ Because of mechanical constraints, the range of joint motion possible is

~restricted and, in some cases, this may result in a home position that is

unreachable. In such cases, the home position is redefined by changing the ir-i’al

" manipulator joint positions and/or frame assignments. The new home position can _

~ be obtained by adding a constant value to the joint angle in case of revolute joint -

and to the joint displacement in case of prismatic joint. This shifting of the home
position is illustrated in Example 3.3.

The algorithm is divided into four parts. The first segment gives steps for
labelling scheme and the second one describes the steps for frame assignment to - A
intermediate links 1 to (n—1). The third and fourth segments give steps for
frame {0} and frame {n} assignment, respectively.

Step 0 Identify and number the joints starting with base and ending with end-
effector. Number the links from 0 to n starting with immobile base as 0 and .
ending with last link as n. ! :

Step 1 Align axis z; with axis of joint (i+1) for i = 0. 1, ..., n-1.

Assigning fmmes to intermediate links — link 1 to link (n—l) For each
link { repeat steps 2 and 3.

Step 2 The x-axis is fixed perpendxculm to both z;_,- and z-axes and points away
from z, ,. The origin of frame {i} is located at the intersection of = and
x-axes. Three situations are possible:

Case (i) Ifz ;- and z;-axes intersect, choose the origin at the point of their
intersection. The x;-axis will be perpendicular to the plane
containing z;_;- and z-axes. This will give a; to be zero.

Case (ii) If z,_;- and z;-axes are parallel or lie in parallel planes then their

' common normal is not uniquely defined. If joint i is revolute then
xraxis is chosen along that common normal, which passes
through origin of frame {i-1}. This will fix the origin and make
d; zero. If joint i is prismatic, x;-axis is arbitrarily chosen as any
convenient common normal and the origin is located at the distal
end of the link i.

Case (iii) Ifz; ;- and z-axes coincide, the origin lies on the common axis. If
joint i is revolute, origin is located to coincide with origin of
frame {i—1} and x.-axis coincides with x;_,-axis to cause d; to be
zero. If joint i is prismatic, x;-axis is chosen parallel to
x;_,-axis to make «; to be zero, The origin is located at distal end
of link i.

Step3 The y-axis has no choice and is fixed to complete the right-handed
orthonormal coordinate frame {i).
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Assigning frame to link 0, the immobile base - frame (0}

Step 4 Thﬁ _fmm:_: {0} location is arbitrary. Its choice is made based on
mmphfica-tmn of the model and some convenient reference in workspace.
Th.e Yo-axis, which is perpendicular to Zy-axis, is chosen to be parallel to x,-
axis in the home position to make 0, = 0. The origin of frame {0} is located
based on type of joint 1. If joint 1 is revolute, the origin of frame {0} can be
chosen at a convenient reference such as, floor, work table, and so on, giving
a constant value for parameter d, or at a suitable location along axis of joint
1 50 as to make d; zero. If joint 1 is prismatic, parallel x,- and x;-axes will
make 6, (o be zero and origin of frame {0} is placed arbitrarily.

Step 5 The yy-axis completes the right-handed orthonormal coordinate frame {0}.

Link n, the end-effector, frame assignment - Jrame {n}

Step 6 The origin of frame {n} is chosen at the tip of the manipulator, that is, a
convenient point on the last link (the end-effector). This point i< called the
“tool point” and the frame {n} is the tool frame.

Step 7 The z,-axis is fixed along the direction of Z,-1-axis and pointing away from
the link #. It is the direction of “approach.” '

Step 8 If joint  is prismatic, take x, parallel to x,_;-axis. If joint n'is revolute, the
choice of x, is similar to step 4, that is, x, is perpendicular to both
Zp-1- and g,-axes. x, direction is the “normal” direction. The y,-axis is chosen
to complete the right-handed orthonormal frame {n}. The y,-axis is the
“orientation” or “sliding” direction. 7 . L i

Once the frames are assigned to each link, the joint-link parameters (6, d;, ¢z,
a;) can be easily identified for each link; using which the direct kinematic model
is developed in the next section. | ; _

In fixing the frames, it is desirable to make as many of the joint-link parameters
zero as possible because the amount of computations necessary in later analysis
is dependent on these. Hence, whenever there is a choice in frame assignment,
emphasis is on making a choice, which results in as many zero parameters as

possible.

3.5 KINEMATIC RELATIONSHIP BETWEEN
ADJACENT LINKS"

To find the transformation matrix relating two frames attached to the adjacent
links, consider frame {i—1} and frame {i} as shown in Fig. 3.9. These two frame
are associated with link (i—1) and / but for clarity the links are not shown in the
ﬁguré. The kinematic joint-link parameters involved (6, d;, «; a;) are shown
therein. Points B, C, D and frame {i~1} and {i} are the same as in Fig. 3.8.

The transformation of frame {i-1} to frame {i} consists of four basic
transformations as shown in Fig. 3.9.

(a) A rotation about z;_,-axis by an angle 6;

(b) Translation along z;_,-axis by distance d;;

(c) Translation by distance ¢; along x-axis, and

(d) Rotation by an angle ¢; about x;-aXis.

Scanned by CamScanner



Robotics and Control

Xi -1

Fig. 3.9 Geometric relationship between adjacent links

Using the spatial coordinate transformations discussed in Chapter 2, the
composite transformation matrix, which describes frame {i} with respect to
frame {i—1}, is obtained using Eq. (2.46) as

“IT; = TO)T(d)T (a)T () (3.2)
From Egs. (2.20), (2.54), and (2.55),

cO, -S6, 0 01 0 0 O1 00 g1 O O O
£ 6, €6; 0 0[0 10 0010 0|0 Ce; —So; 0
il o 0 100014001 0|0 St; Ce; O
0 o otjlooo 1jooo t]lo o o 1]
"CO, -S0,Ca; SO,Sa; a;Ch;]
. g _ | S0 co,Co; —CO,Se; a;56; o
10 Sa; Ca; d; _
e 10 0 0 1

where C6, = cos 6, S6; = sin 6;, Co; = cos @, and S¢; = sin @;.

The transformation from frame {i—1} to frame {i} can also be obtained by
considering an intermediate coordinate frame {i’} located at point C, as shownin -
Fig. 3.9. From the figure, the transformation from frame (i} to frame {1’} consists
of a rotation and a translation about x-axis and the transformation from frame
(i’} to frame {i~1) consists of a rotation and a translation about z; ,-axis. The
two homogeneous transformations are:

1 0 0 g
tr o 0 Co; =Sa; 0O
710 Sa; Ca; O

0 0 0 1
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[CO; -56, 0 0
- 6, o,
lj ITP‘: i 6‘! 0 0 (3.4)
0 0 1 4
P8I AR i N 3 1

The composite transformation from frame (i} to frame {i-1} is, thus, obtained

as -

Svi=lay _ jelen
Tl;—- Tr!Ti

Substituting from Eq. (3.4) gives the basic link transformation matrix as:

(CO; -S6,Ca; S6,S0; ia,CO,T

f—lTi L Seii C@,C(If , —CBISCI,- aESQ,- ; (35)
0 Sa; Ca; : d
X 5 0 ........... 0-1

This is identical to'Eq. (3. 3) as it should be: This is an 1mportar1t result for
modeling manipulators,

The homogeneous transformation matrix 'T descnbes the position and
orientation of frame {i} relative to frame {i~1} and completely specifies the
geometric relauonshlp between these links in terms. of four DH-parameters
(6, d; a; ap). Of these four parameters, only one.is a variable for link i, the
chsplacement variable g; (6; or d;) and other three are constant. The matrix
“IT(g,) is known as link i transformation matrix. As shown before, the 3 x 3 |

upper left corner submatrix of Eq. (3.5) gives the orientation of coordinate axes ' |

-of frame {i}, while the 3 x 1 upper right corner sub-matrix represents the position
of the origin of frame {i}.

3.6 MANIPULATOR TRANSFORMATION MATRIX

In this section, the last step in formulating the forward kinematic model of a
manipulator i$ discussed. This model describes position and orientation of the last
link (tool frame) with reference to the base frame as a function of joint
displacements ¢, through g,. Ann-DOF manipulator consists of (n+1) links from
base to tool point and a frame is assigned to each link. Figure 3.10 shows the
(n+1) frames, frame {0} to frame {r}, attached to the links of the manipulator.

The position and orientation of the tool frame relative to the base frame can be
found by considering the n consecutive link transformation matrices relating
frames fixed to adjacent links. Thus,

07 =gy Ty . P ITa) (3.6)
where "”IT,-(Q';) fori=1,2,...,nisthe homogeneous link transformations matrix
between frames {i—1)} and {i} and is given by Eq. (3.5). :

“The tool frame, frame {n}, can also be considered as a translated and rotated

frame with respect to base frame {0}. The transformation between these two
frames is denoted by end-effector transformation matrix T, Eq. (2.31), in terms of
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Fig 3.10  Location of end-effector frame relative to base frame

tool frame orientation (n, 0, @) and its displacement (d) from the base frame {0}.
In Fig. 3.10, frame {n} is the tool frame, thus, T is equal to e
P OT OTI IT n- lT ‘ : (3 7)
Equallon (3.7) is known as the kinematic model of the n-DOF manipulator. It
provides the functional relationship between the tool frame (or end-effector)
position and orientation and displacement of each link g;, which may be angular
or linear, depending on joint being revolute or prismatic. That is,

T=f(g), i=12,..,n _ (3.8)
ny 0y ay dy N N2 M3 ifa| ”
= S s B A (3.9)
f’g_ o, az d, By B3y N33y

0710 V0. o0 e

where coefficient r;; are functions of joint displacements g;. For the known joint
displacements g; for: = 1,2, ...,n, the end-effector orientation (n o @) and position
d can be computed from Eq. (3 8).

Several examples are now worked out to clarify the concepts of the direct
kinematic modeling. The first example is a simple one, a 2-DOF manipulator, the
others are of some common configurations of manipulator arm and wrist, and the
last example illustrates the kinematic modeling of a 6-DOF industrial
manipulator.

i

| SOLVED EXAMPLES ' = =
Example 3.1 A 2-DOF planar manipulator arm

Obtain the position and orientation of the tool point P with respect to the base for
the 2-DOF, RP planar manipulator shown in Fig. 3.11.
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P

Solution  The formulation of direct kinematic model of the manipulator begins
with the study of its mechanical structure and identification of the links and joints.
The frames are then assigned using Algorithm 3.1, This example is a simple one
and illustrates the basic steps involved in formulation of kinematic model.

% P (Tool point) .

Y
)

Joint 2

(prismatic) T Link 2

(End-effector)

Link 1
/—'-

Joint 1 ( i
(revolute) " . = X
) ,X/‘ Link0 . -

Base (link 0)

Fig. 3.11' A 2-DOF planar manipulator arm with one rotary and one prismatic joint

The planar configuration of this manipulator can be employed to manipulate
cbjects within a plane, the xy-plane. The first joint is a revolute joint and the
second one is prismatic. It is easy to see that it has a circular area as workspace.
The size of the two links determines the radius of inner and outer circles of the
workspace area. Point P may or may not traverse a full circle, depending on the
mechanical design of joint and joint range available at joint 1.

The axis of joint 1 is perpendicular to the plane of workspace, while axis of
joint 2 lies in the plane. The two joint axes intersect each other. The home position
is considered as the horizontal position (6, = 0) and prismatic link completely
retracted in, corresponding to radius of inner boundary of workspace. The step-
by-step frame assignment is carried out, according to Algorithm 3.1, as explained
below. TARL : :

Step 0 The two joints are numbered as 1 and 2 and links as 0, 1, and 2 starting
with the immobile base as 0. _ _

Step 1 Joint axes z, and z; are aligned with the axes of joint 1 and 2,
respectively. -

The joint-link labelling and joint axes are shown in Figs. 3.11 and 3.12, Frames
are assigned to intermediate links first, and then to the first and last links. In this
example, there is only one intermediate link, link 1.

Step 2 For frame {1} of link 1, the z;-axis is fixed in step 1 above. Because
zy- and z,-axes intersect, the origin of frame {1} is fixed at the point of
their intersection, according to Step 2 case (i) of the Algorithm 3.1, The .
x,-axis is set in the direction of perpendicular to plane containing Z5-and
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z;-axes. Note that &;, dy and a, will be defined after frame {0} is ﬁxed
The' vanable parameter for this is 91 :

, Voo
Same origin

Fig. 312  Frame assignment for 2-DOF .pIanar manipulator

Step 3 The y,-axis is fixed by the right-hand rule to complete the orthonormal
frame {1}. The frame {1} is shown in Fig. 3.12. |
Step 4 Now, frame {0} is assigned. The positive direction of zg-axis is
arbitrarily chosen as coming out of the page, as shown in Fig. 3.12. The
joint between link 0 and link 1 is a revolute joint. The origin of the
frame {0} should be chosen for the revolute joint at a convenient location
so as to make parameter d, zero. This location is at the joint itself. Thus,
the origin of frame {0} is placed at the intersection of z;- and z,-axes.
This is also situated the origin of frame {1} or two origins coincide
giving a; = 0, and d, = 0. The x;-axis is chosen parallel to x,-axis, and it
- coincides with x,-axis. The rotation of zj-axis to z;-axes about x;-axis
~defines the twist angle ¢; as 90°. Thus, the choice of frame {0} and {1}
defines parameters as &; = 90°, a; =0 and d; = 0. -
Step 5 The y-axis is fixed to complete the orthonormal frame {0}.
Step 6 The origin frame {2}, the last frame, is fixed to the tool point P of the
' last link (the end-effector). The choice of this origin defines the joint
variable d, as distance measured from origin of frame {1}.
Step 7 The direction of z,-axis is chosen to be same as z;-axis pointing away
from link 2. - |
Step 8 Joint 2 is prismatic and, hence, x,-axis is chosen to be parallel to X-axis.
The y,-axis is fixed to complete the frame {2}. Once the frame {2} is
defined, the parameters get the values as: a, =0, a, =0, and 6, = 0

The complete frame assignment is shown in Fig. 3.12. The coinciding frames,
- frame {0} and frame {1} are drawn away from each other for clarity but marked
as “same origin” and there is zero distance between their origins. -
The assigned frames define the four DH-parameters for each link so as to
completely specify the geometric structure of the given manipulator. The joint-
link parameters are tabulated in Table 3.1. For each link, the displacement
variable g; is identified and placed in the displacement variable column. It is
important to note that each row of the joint-link parameter table has exactly one
variable and there is no row without a variable. Any deviation from these
conditions indicates an error in frame assignment and/or joint-link parameter

|

e |
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ldc“t;]ﬁcﬂ“ﬁn_- Nﬂtf that out of sjx constant joint-link parameters, five are zero
and the sixth is 90°. The two displacement variables are 6, and d,.

Table 3.1 Joint-link parameters for the RP manipulator arm

Linkd) a o) dy | 8 T Displacement ] C6; | 36, | Coy] 5o
S AR N 0, c, | s | o] 1
2 0 | d |0 d, -4 o | 1] o

The next step is to obtain the individual transformation matrices T, and 'T,
for relz'itmg successive links. These are obtained by substituting the values of the
joint-link parameters in Eq. (3.5). To facilitate writing of transformation
matrices, four columns defining cos 6, sin 6, cos a;, and sin ¢ are appended to

the joint-lin'k parameter table and values are filled in for each row. The two
transformation matrices are, therefore,

G, 0 S, 0
S, 0-c, 0|
°T(6,) = 01 i 0_‘ ; (3.10)
(00 0 1)
100 0 _
w91 2o 0 '
1
To(dy)=| 3.11)
1001 4
100 0 1

Each of the above transformation matrices is a function of only one variable,
the displacement variable for the link. Finally, The forward kinematic model is
obtained by combining the individual transform matrices. Thus, °T, the
transformation of tool frame, frame {2}, with respect to base frame, frame {0} is
obtained by substituting individual matrices, Eqgs. (3.10) and (3.11) in Eq. (3.6).
The final result after simplifying is:

C, 0 'S «d,S
S, 0 -C, -d,(
0 1 0 0.
[0 0 0 |
This overall transformation, Eq. (3.12), is equal to the end-effector

transformation matrix, Eq. (2.31), and the direct kinematic model in matrix form
1s:

=" = (3.12)

ﬂx “rx C] U Sl. szl

y y ay d}’ - Sl 0 _Cl _dzcl (3.13)
a, A | 0T

0 0 0 1 0 0 O 1

This kinematic model can also be expressed by 12 equations as:
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"xzcl
n'.,.--S1
n,=0
0,=0
0,=0
0,=1
a, =S5,
a},——Cl
a,=0
d, = d,S,
d,.,=—dzCl
d =0

z '

(3.14)

From Eq. (3.13) or Eq. (3.14), the orientation and positibn of the tool point P
can be computed for given values of displacement variables 6; and d, at any
~ instant of time. For example, for 6, = 120° and 4, = 200 mm the end-effector

transformation matrix will be

' 0.5 0 0.866 173.27

0866 0 0.5 100.0
0 1 0 0
0 0 0 1

TE=

-

It is assumed that 8, and d, chosen above are within the available range of

joint motions.

Example 3.2 Kinematic model of a cylindrical arm

-

"-.h,___‘q_h‘_

Formulate the forward kinematic model of the three-degree of freedom (RPP)

manipulator arm shown in Fig. 3.13.

SV M O O Tl |

] . , Y Y ST
>
; d3
Joint axis 3 .

R-Joint axis 2

SN

Joint axis 1—
\

Face plate for
attaching wrist

Fig. 3.13  Mechanical structure of a 3-DOF cylindrical (RPP) manipulator arm

Scanned by CamScanner



Symﬂy_ﬁdﬂ]ing of Robots—Direct Kinematic Model w

first joint is revolute, while th :
fir — €, € next two are pri i
Sl G Th, ko prismatic, The axes of the first two

Chapter 1, tion has a cylindrical workspace as discussed in

Asin th i _——
© Previous example, begin with fixing home position, labelling links,

joints and assigning frames using Algori .
frame assignment are left for (s g Algorithm 3.1. The details of step-by-step

Fig. 3.14 reader. The final frame assignment is shown in
dy »
{2} p
___________ e
Z | / 3) .
X2 Y2 ' X3 1
: Y;
d> I 13
|
424
vl {1} o
e
L .
i = ==

T JZO

(e
.

/o ¥l

X[] il

Fig. 3.14 Frame assignment for the cylindrical manipulator arm

Next, the joint-link paranieters are i.denl'tiﬁéd and these are tabulated in
Table 3.2. ' '

- Table 3.2 Joint-link parameters for the RPP manipulator arm

The transformation matrices for transformation of each link (frame) with
respect to the previous one is obtained as: ‘

C, =S, 0 0]
8. & 00
0 = SE 1
syl b e S
R R TR O
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PG
00.10]|
0 10 d R
L0 0. 0/ 1)
g
0100 .
001 d P
000 1

~ The overall transformation matrix for the manipulator is obtained by
multiplying the link transformation matrices. Thus,

C, 0 =S, —dsS]
S 0 € vdiG
0 -1 0 4
0 0 0 I

'Ty(d,) =

*Ty(dy) =

o R i M e (3.18)

Example 3.3 Articulated arm kinematic model

A 3-DOF articulated arm is considered as the next example for obtaining the
transformation matrix for the endpoint.

Solution An articulated arm is a 3-DOF-manipulator with three revolute joints,
that is an RRR arm configuration as shown in Fig. 3.15. The axes of joint 2 and

joint 3 are parallel and axis of joint 1 is perpendicular to these two. At the end of
the arm, a faceplate is provided to attach the wrist.

Joint 3

Face plate for
attaching wrist
“Joint 2 -
(Shoulder) . T
Arm point
7 ANN AN

Fig. 3.15 A 3-DOF articulated arm with three revolute joints

To determine the “arm point” transformation matrix, the frames are assigned
first as shown in Fig. 3.16. The resulting joint-link parameters are tabulated 1n
Table 3.3. For all the three joints, joint-offsets are assumed to be zero.
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— -

.. Fig. 3.16  Frame assignment for articulated arm

Table 3.3 Joint-link parameters for articulated arm

> Same origin
Fd

-~

-

The link transformation matrices are

G078, 0
S 0 -G 0

0 1 1

T =

1(6) g e
00 0 1
_Cz _52 0 chz-
$ 00 LS

1T2(92)= 0 0 1 0
0 0 0 1
S3 C3 0 LgSj

2T3(93)= 0 0 1 0
0o 0 0 |

(3.19)

(3.20)

(3.21)

The overall transformation matrix for the endpoint of the arm is, therefore,

[CiCy
$1Cy
52
0

Uip: O I, 2T, =

—CiSy;
=818
Cy
0

Sl
— Cl

0

0

C(LyCy + LG

Si(LCyy + 1, Gy)
LSy + 1S,
1

where C,, and S,, refer to cos(6,+6;) and sin(6,+6,), respectively.
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At the home position, 6, = 6, =6, =0. Substituting these displacement
variable values in Eq. (3.22), the direct kinematic model, the orientation and
position of end-of-arm point frame for the home positions is obtained as:

n, o, a, d,] 1 0 0 L,+L
0, d, 00 -1 0

; a
N T Yy y S 4 T (3.2
S 0o, a, d, 010 0 “ o )

Z Z

000 1] 000 1 |

From Eq. (3.23), it is observed that in the home position the arm point frame,
frame {3}, has its x-axis (x,-axis) in the same direction as x,-axis, y;-axis in the
zp-axis direction, and zj-axis in the negative yo-axis direction. The origin of
frame {3} is translated by a distance of (L,+L;) in the xg-axis direction. This
means that if, initially frame {3} is coincident with frame {0}, its home position
and orientation is obtained by translating the origin by (L,+L;) along x,-axis and
rotating it by +90° about xj-axis. The position and orientation of frame {3}
obtained from Eq. (3.23) matches with the coordinate system established in
Fig. 3.16, verifying the correctness of the model obtained.

Home position of the articulated arm corresponding to the frame 3551gned in
Fig. 3.16, that is, 6, = 6, = 6, = 0, is drawn in Fig. 3.17(a). An alternate home
position can be obtained by adding constant angles to 6, and 6,. For example, if
we added +90° to joint angle 6,and -90° to joint angle 6;, the new home position
is drawn in Fig. 3.17(b).

S =

=

G———TnP

=
A

Y |

Syl

(a) Preferred home position (b) Alternate home position

Fig. 3.17 Two possible home positions for the articulated arm

For this alternate home position of the manipulator the new joint displacements
65 and & are defined by adding +90° to joint angle 8, and —90° to joint angle 6;,
respectively.

Frame assignment and the kinematic model formulation for this new home
position with displacement variables 6, 0,, and € is left as an,exercise for the
reader. The joint-link parameters for this home position are tabulated in
Table 3.4.
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. Table 3.4 Joint-link parameters for the articulated arm with new home position

Example 3.4 RPY wrist kinematics

For the ?_DOF roll-pitch-yaw (RPY) wrist shown in Fig. 3.18 obtain the direct
kinematic model. i3

Solution The 3-DOF RPY wrist has three revolute (RRR) joints, which provide
any arbitrary orientation to the end-effector in 3-D space.

To get the direct kinematic model, it is assumed that the arm end-point is
stationary and can be considered as the stationary base frame, frame {0}, for the
wrist.

The joints are labelled and joint axes are identified as shown in Fig. 3.18.
Cbserve that for the “home position” shown in figure the axes of joint 1 and joint-
2 are perpendicular to each other and intersect at joint 2. The axes of joint 2 and
joint 3 are also mutually perpendicular but are in parallel planes. The three joint
displacements 6,, 6,, and 6, are along three mutually perpendicular directions:
roll, pitch, and yaw. ;

The frame assignment for the four frames, frames {0} to frame {3} is carried
out next and is explained frame by frame in the paragraphs below.

Joint 1 Joint 2 Joint 3

/“\ /\ Rnep.

k|

-HEONIE

Arm end \ N

Roll Pitch Yaw
Fig. 3.18 A 3-DOF freedom roll, pitch and yaw (RPY) wrist

The frame {1} for link 1 is fixed with x,-axis perpendicular to both z,- and
z,-axes and its origin is fixed at joint 2, the point where axes z; and z, intersect, as
per step 2(i) of Algorithm 3.1. For frame {3}, the axes z, and z; are perpendicular
to cach other but do not intersect as they lic in parallel planes. Because the joint is
revolute, the common normal, which passes through origin of frame {1}, gives
the direction of x,-axis, as per step 2(ii) of Algorithm 3.1. The origin of frame {2}
is fixed at the intersection of x,- and z,-axes and is located at origin of frame {1},
givinga,=0and d, = 0.
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The base frame, frame {0} is fixed with its origin coinciding with ongm of
frame {1} and choosing x,-axis parallel to x,-axis to givea; = 0 andd, = 0. The
physical distance between joint 1 and 2 can be accounted by i increasing the size of
last link of arm appropriately. :

The origin of the last frame, frame {3}, is normally fixed to the tool point for
convenience. If this is done, the distance between origins of frame {2} and
frame {3}, corresponding to the size of the end-effector will be nonzero in the
kinematic model. To simplify the kinematic model the origin of frame {3} can
also be chosen to coincide with the origin of frame {2}, giving a; = d; = 0. The
constant dimension of the end-effector can be accounted later by applying a
constant translational transformation.

Now, the x;- and zj-axes of frame {3} are fixed to coincide with x,- and
z5-axes. The complete frame assignment is shown in Fig. 3.19. Note that the
origins of all four frames are coincident and that the orientation of frame {3}, the
tool point frame is different from the conventional orlcntatton where z-axis is
taken in the approach dlrectmn

X X by e gy it "z
0 1 20 2 | .. 3
64 : 6
{0} ™~ N Z, ‘i {1} r A {2 X ~ “p X3
i \ ¢ P
=~ A $ oty L e
— pa -
P
Same origin

Fig. 3.19 Frame assignment for 3-DOF RPY wrist

The joint-link parameters based on the above frame assignment are tabulated
in Table 3.5. Note that the orientation of frame {2} is reached by two rotations of
frame {1} — first, a rotation of +90° about z,-axis followed by a rotation of +90°
about rotated x,-axis to align z,-axis with the axis of joint 3. The first rotation
gives a constant (+90°) to be added to 6, and the second gives @, = 90°. These
are shown in row 2 of Table 3.5.

Table 3.5 ]omt -link parameters for RPY wrist

e ag e ase
01 Bt

0+ 90°| 0,
0, 0,

The transformation matrices are now obtained from Table 3.5 as

G0 8 0
& O = 0
0 | |
T, = 3.24
. 01 0 0 S
00 0 I]
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: -—52. 0 Cz 0;_
| C, 08 0
T.=| % & *2
2 0 1 0 0 (3.25)
L0 0 0 1
—CB "33 0 07
2 S3 C3 0 0
T, =
3 0 0 10 (3.26)
LO 0 01
and the overall transformation matrix for the RPY wrist is
-_CISZC:]. +S[S3 CISES:') +S| C3 C]C2 0-
OT?, - 0'11 lj; 2T3 =' _SISZCE, e CES3 S]S2S3 = C]C3 S]CZ 0 (327)
GG =08 « &0
L 0 0 0 1

Checking the correctness of this model for the home position is left to the
reader.

Example 3.5 Kinematics of a 3-DOF Polar Arm

For the 3-DOF (RRP) manipulator arm shown in Fig. 3.20, obta_iﬁ_lh_e orientation
and position of tool point P of the joint variable vector is g = [90° —45° 100 mm]”
with x; = 50 mm and x, = 40 mm.

o

v v T T CETrErre. Lo

- LR 77 AT RN
Fig. 3.20 A 3-DOF (RRP) spherical configuration manipulator arm

Solution The 3-DOF RRP manipulator is constructed by fixing the 2-DOF arm
of Example 3.1, Fig. 3.11 on a rotary table.
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Assume in home position of the arm, the last two links are vertical. For thjg
home position, the frame assignment using Algorithm 3.1 will be as shown in

Fig. 3.21.
' Z

___‘_iL_.. Xs
|
|
|

d3 -

Z;

~ Same origin

Fig. 3.21 Frai_ne assignment for home position of arm in Fig. 3.20

Note the location of frame {1} with respect to frame {0} and the inclusion to
two parameters.xy, and.x,. The joint link parameters from the frames assigned are
tabulated in Table 3.6.

Table 3.6 Joint link parameters for 3-DOF RRP arm

The three transform matrices are thus, obtained as:

"C] O Sl .?i'ltl:‘l-|
S, 0 =C S
T=| . o (3.28)
0 ] 0 ."2
000 0 I
C, 0 =S, 0]
s 0 C 0
i, | 5 2 1 (3.29)
T2 0O -1 0 0 (
0 0 0 1
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1100000

7, - i B R R - e
001 4 . | -
10-:0 0 .1

and the overall transformation for the arm is

2 0 G Cyldy—x, (3.31)
L0 0 0 1 ]

The orientation of the end-effector (point P) is described in terms of joint
variables by the rotation submatrix of T, that is,

a T=",'7, 2T3 =

Ci Cz _Sl _Cl Sz

R=|SC ¢ -5 (3.32)
$; 0 G
For 8, =90° and 6, = —45°, the orientation of P is
n, o, a, 0 =1 " d
n, o, a,|=|0707 0 0707| B (3.33)

n, o, a,| |-0.707 0 0.707
and the position of end-effector is described by the translation vector D as

—C,8,d; + x,C; :
D= =5182d3 + 1,5, Wb (3.34)
3Gy —x;
for given joint-link parameters and ¢, the position of P is
D=[0 20711 110.711]" (3.35)

Example 3.6 SCARA manipulator kinematics

Obtain the direct kinematics equation of the 4-DOF Selective Compliance
Assembly Robot Arm (SCARA) robots.

Solution The SCARA manipulator is a widely used industrial robot for
assembly operations. Figure 3.22 shows the configuration of the SCARA
manipulator, which is a four-axis horizontal-jointed articulated arm configuration
as discussed in Chapter 1. The first two joints are revolute to establish the
horizontal position of the tool. The third joint is prismatic which determines the
vertical position of tool. Finally, the last joint is revolute which controls the tool
orientation. Thus, SCARA has RRPR configuration and gives an upright
cylindrical workspace. It may be useful to recall that the RPP manipulator
discussed in Example 3.2 also has a cylindrical workspace, but the two arc
different (i) in the number of possible ways to reach a point within the work

—
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volume, and (ii) the orientation of tool point. In Example 3.2, the too]
orientation is radial, where as the tool point of the SCARA robot is a]
oriented in the vertical direction. The frame assignment
manipulator is carried out as follows: |

All the joints and links are identified and labeled from 1 to 4 and 0 to 4
respectively. The axis of each joint is vertical and frames are fixed next, ’

point
alwaysg
for the SCARA

Axls 2 Axes 3and 4
Axis 1 e b ———
»
QD k1= (D Link 2 ' 1
| NN NN —— VA 4
7% v\ VA " Link3
.Jz d3 2 e
i - J
1 L{g—‘ E@ 4

: «—— Link 0 Lat Q R T

| . '2/ ](-e':ll'éiﬁecmf)
1

\ : Tool puint/

Fig 3.22 A 4-DOF SCARA manipulator in home position

Frame {1} Joints 1 and 2 axes are aligned with z,- and z,-axes, respectively. As
zp- and z,-axes are parallel, choose x,-axis as the common normal to
zp and z, directed along the link 2. The origin of frame {1} is placed
on z,-axis at the joint as shown in Fig. 3.23. The y,-axis completes
right-handed orthonormal frame {1}. This gives &, = 0.

Z4 Z
i Y. A Y,
P 1 ! 2
k__;j/ .L2 ,_! /_,..1"
M . -1l/ -
210 ’ | X {2}. ‘

o ¢ |5/ 9 Li2 ) ds
),

{0}',_/ Xo _7_x|r_ (3| | «
| y, A
i T e T A |

Ys 1 Ly
64 y Z4 ‘
{4} I il NG
Ak
/|
Yy

Fig. 3.23 Frame assignment for SCARA robot

1
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Frame {2} Joint3 axis is aligned with z,-axis. Since z;- and z,-axes are parallel,

set xp-axis as the common normal which makes d; zero. This fixes

lh*? origin of frame {2} and results in o, =0, d, = 0 and a, = L,.

Joint 3 is prismatic and z-axis coincides with z,-axis, thus 0, = 0.

Origin of frame (3} is placed at distal end of the prismatic link 3.

Since the link displacement is downwards, it is convenient to point

zz-axis downward. This gives a3 = 180°. The x;-axis is chosen

parallel to x,-axis making 6, = 0. g

Frame {0} zy-axis has already been aligned along joint 1 axis. The x,-axis is
fixed along the link 1 axis such that Xg-axis remains parallel to x-
axis. Since joint 1 is revolute, origin of frame {0} is placed at joint |
at the intersection of axes z[}'and Xo as shown in Fig. 3.23. The right-
handed orthonormal coordinate frame {0} is computed with y,-axis.
The position of origin of frame {0) relative to frame {1} given by a
translation by L,, in x, direction and L,, in z, direction, this frame
assignment gives ay=L,;andd, = Lj,. Here L, corresponds to tho_a
length of link 1 and the distance L,, is known as joint offset.
Alternate locations of the origin of frame {0} are possible.

Frame {4} z,-axis is chosen parallel to z,-axis and origin of frame {4} is
located at the tool tip. Joint 4 being revolute, x,-axis is chosen to be
parallel to x;-axis giving o, =0, @, =0 and d, = L.

The complete frame assignment is shown in Fig. 3.23 from which all the joint-
link parameters are determined and tabulated in Table 3.7.

Frame {3)

Table 3.7 Joint-link parameters for SCARA robot

We now obtain the individual transformation matrices that specify the
relationship between adjacent links as below:

860 D Ligd
0 l 1. 11+ _
T.(0,) = (3.36)
METlo" 0 1Ly
T A
6, =8, 0 LG
1 SZ CZ 0 L’.’.SZ ;
LO={0 o | o (3.37)
L0 0 0 L1
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1+ 0 8407
- 0 -1 0 0
4(d3) = 0 0 -1 d (3.38)
00 0 1|
Cy =S, 0 07
S C4 0.0
3 4 Ly -
T4(8,) = (3.39)
R
WORRE T S O

The manipulator transformation matrix obtained after multiplication of the
above four matrices and simplification using trigonometric identities, is
[Ciaa Sa 0 LG + LG ]
S =Ciyq 0 LySp, + Ly
0 0 = Ly dy =iy
0 0 0 1 ]

Here, C)y, denotes cos (6, + 6, - 6,), S|, denotes sin.(a, + 6,- 6, Cp,
denotes cos (6, + 6,), and S, denotes sin (6, + 6,).

T, = (3.40)

L

The fact that the third column of the matrix °T, is always [0 0 —1 0],
means that at any instant the z-axis of the tool frame (approach vector) is in the
direction of negative z-axis of the base frame. This is a characteristic of SCARA
robots that are designed to manipulate objects from directly above. In addition,
the SCARA wrist possesses only 1-DOF, the roll motion, to orient the tool.

Example 3.7 Kinematics of a 5-DOF Industrial Manipulator

In many industrial applications of robots five degrees of freedom are sufficient to
carry out the industrial tasks effectively. Many common industrial manipulators
are, therefore, constructed with a 3-DOF arm and a 2-DOF wrist with roll and
pitch motions. One such manipulator with an articulated arm is shown in
Fig. 3.24. All the five axes of the manipulator are revolute.

Obtain the kinematic model of the manipulator and test it for the home position.
Determine the position and orientation of the end-effector (tool point P) if the
joint variable vector is q = [n/4 -3m/4 m/2 m/4 x]" and the link
parameters are L, = 50, L, = Ly = 140 and Lg = 20.

Solution To determine the kinematic model of the manipulator, the home
position of the manipulator is chosen such that link 2 of the arm is vertical and
link 3 and the wrist are horizontal. For this home position the joint variable vector
willbeg,,..=[0 0 0 0 0]".Forthe home position, the frame assignment

is carried out. Applying steps 0 to 8 of the Algorithm 3.1, the frames to all joints-
links are assigned and are shown in Fig. 3.25.
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Fig. 3.24 A five degree of freedom industrial manipulator
X4 Xs
! -
Same - ~Ls >
origin \\\‘*« < i A {5}
\ /. ; 24 P
\ / 05 ¥
8 <1 Z; ) Z3 f Ys
93(\ ' g,
{1} {2} x_’ ] {3}
X4 Xo s
1 | P X3
< Ly > Ly >
|
L iz
Yo
64 Q)/(
L, EN = Xp

{0}

Fig. 3.25 Frame assignment for 5-DOF industrial manipulator

Note that the origins of frame {3} and frame {4} coincide but are shown
separated to make the diagram clear. The orientation of frame {4} is obtained by
two rotations of frame {3}, first by —-90° about z;-axis and, second by —90° about
rotated x,-axis. Recall that the frame assignment by Algorithm 3.1 is not unique,
for example, a different frame assignment will be obtained by choosing the z-axis
of any or all of the joins in the opposite direction. In Fig. 3.25 frames {0} to {3}
correspond to the 3-DOF of articulated arm (see Example 3.3) and frame {3} to
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{5) correspond to the 2-DOF wrist (see Example 3.4). The frame {3} is the frame
of arm end-point as well as the frame of wrist base. The joint-link parameters for
the manipulator based on the frame.assignment are identified and tabulated in

Table 3.8.

Table 3.8 Joint-link parabteters for the 5-DOF manipulator

2 0 1
3 . 0 - 1
4 0 [-90° | 0 |690°| 6, Ss | —Cs 0 -1
5 0 0. L | o | @ |.€%] S 1 0
The transformation matrices are, thus, obtain.ed as
B . ey
OTI — | T PR - | | . (341)
0 -1 0 L
[0 0T -1 |
—Cz _SZ 0 Lz CZ-
S, G 0 L,S
1 29 2 2
L= ¢
S T R (3.42)
0 0 0 I |
[C; =83 0 LGy
Sy G0 LS
2 3 3 3
T. =
% B 0 ;17 @ 4:43)
.0 0 -0 1
Sy 0 G4 0]
-c, 0 § O
3 4 4 .
T, = 44
=D hd O
| 0 0 0 1]
[C; —=Ss 0 07
= G 09
4 5 5 5
= 3.45
sl w0 i L S
0 0 0 1

The transformation matrix for the arm is
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(GG ' =18y =S, C(LCy + L4Cy)]
ony = nirir = | T s GGG LA) |4
3 Gy 0 Li-LS-LSy
.0 0 0 SRS | ]
and the transformation matrix for the wrist is
T =TT = —CiCs GySs Sy LsSy (3.47)
"SS _CS 0 0
i JX 0y -0 1

The overall transformation matrix for the manipulator is, therefore,
OTS Lo 0T3 3T5 ’ .
[ Ci5234Cs 8,55 - =Ci 808 £.5:6s.. CiCrayir Gl LiCot LsCriik LaCig N
81Cp34Cs—CiSs =8,8,3,85 = C,Cs  §Cpy S1(LpCy + L;Co3 + LsCriy) |
~C234Cs I U CueSs  =Spy Li-LS LSy — LsSy4
Tl it i e
| (3.48)

Equation 3.48 gives the kinematic model of the manipulator. Note that the
approach vectora and position vectorp are independent of the wrist roll (6s). The
transformation matrix for the home position of the manipulator is obtained by
substituting gy, e in Eq. (3.48). The resulting home position matrix for the end-
effector is e

(0021 <Ly 4+ Ly+ s
0 -1 0 0
Th{)me = (3°49)
1 0 0 L:
0 0 0 1 ]

The home position transformation matrix gives the orientation and position of
the end-effector frame, frame {5} or tool frame at point P. The orientation of
frame {5} is given by the 3 x 3 rotation submatrix of Eq. (3.49) and is described
as follows: the frame {5} is rotated relative to frame {0} such that xs-axis is
parallel and in same direction to z-axis of base frame, frame {0} or z5-axis; ys-
axis is parallel to yy-axis but in opposite direction; and Z5-axis is in xg-axis
direction. The position of point P or the origin of end-effector frame, frame {5},
is given by 3 x 1 displacement matrix of Eq. (3.49) and it is displaced by
[L,+L,+L; 0 L ]T from the base frame, frame {0}.

Finally, the position and orientation of the end-etfector, point P, for the given
joint variable vector ¢ = [#/4 -3m/4 m/2 n/4 m]" and link parameters
L, =50, L,=Ly=140 and Ls = 20 is obtained by substituting these values of .
joint-variables in Eq. (3.48). This gives
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0 -0.707 0.707 14.14]
0 0707 0707 1414
ESl-1 0 0 248 Vel
0 0 0

Example 3.8 Stanford manipulator kinematics

The last example considered is of a 6-DOF industrial manipulator. Formulate the

direct kinematic model of the six degrees of freedom Stanford manipulator shown
in Fig. 3.26.

Solution The Stanford arm, shown in Fig. 3.26, is characterized by a three
degree of freedom arm and three degree of freedom wrist. The first three joints,
two revolute and one prismatic, constitute the arm of the spherical (RRP)
configuration (see Section 1.6.5). The last three revolute joints constitute a wrist
of RRR configuration. The first three links are larger in size and are used to
position the wrist and the last three links for the wrist are small in size and are
used to orient the end-effector. Joint 1 is a revolute joint, which rotates the whole
body about the vertical axis (joint axis 1). Joint 2 is also revolute and moves
about horizontal axis (joint axis 2) in a plane perpendicular to axis of joint 1.

7> 6

_ = Joint axis 6
Joint axis 5 —
e
ey & il
Joint axis 4 — ‘ 6
1 84
! ds —Joint axis 3
[FTIEY P
Joint axis 2 — ! | ,
N\ Do |
A |
\
T S e B pan
* &
Joint —_ | T
axis 1 “‘HH‘LI ‘l
" | | L.
X

Fig. 3.26  Six DOF (RRP : RRR) Stanford manipulator in home position
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- Joint 3 is a prismatic joint that causes translational motion along joint axis 3 in
a plane perpendicular to joint axis 2. The last three revolute joint motions are roll
(joint 4), pitch (joint 5) and roll (joint 6) motions about joint axes 4, 5 and 6,
respectively, which orient the end-effector. This wrist configuration is known as
“Euler wrist”, see Section 2.5.3. Observe that joint axes 4, 5 and 6 intersect at a
point. Reader must note the differences between the RPY wrist discussed in
Example 3.4 and the Euler wrist.

According to step 0, Algorithm 3.1, the six joints are numbered from 1 to 6
starting with joint 1 between link O (the immobile base) and link 1. The
orientation of each joint axis and joint variables are identified and labeling
corresponds to the home position as shown in Fig. 3.26. The reader must note that
this is the home position of the manipulator in which all the joint variables are
zero or at minimum. B

The step-by-step frame assignment for each joint-link of the manipulator
according to Algorithm 3.1 is explained below. Frames are first assigned to the
intermediate links, links 1 to 5 and then to the link 0 and link 6. Refer Fig. 3.27 for
the frame assignment.

| ZB
© T Ye
Xe
Zs « Ls
b T
= T S 5
Same origin < ~_ ~ O, -

=41 Y,

I - 5
-~ x,
| - S 5 ~
% ¢ @) Z
N 3 Xq. l 65
\
SR 2
? gl
Xa
Same origin i
3
22
TRSNE. . S Ys
{2}

Fig. 3.27 Frame assignment for chosen home position for Example 3.8
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Frame {1} Align zy-axis with joint axis 1 and z,-axis with joint axis 2. Becauge
zo- and z;-axes intersect (step 2(i) Algorithm 3.1), fix origin of
frame {1} at the point of their intersection and set X;-axig
perpendicular to the plane containing z,- and Z,-axes. _
The y,-axis completes the right-hand orthonormal coordinate
frame {1}. This frame assignment gives o =-90°, 3 pe

Frame {2}: Align z,-axis with joint axis 3. Fix origin of frame {2} at-the
intersection of z;- and z,-axes and set x,-axis perpendicular to the
plane containing z,- and Zy-axes. Frames {1} and {2} give o, =9(°,
dy =L, and a, = 0. ;e

Frame {3}: Align zy-axis with axis 4. Since 2~ and zz-axes coincide (step 2(iij))
and joint 3 being prismatic, choose x,-axis in the same direction as
Xy-axis making constant parameter @ to be zero. The origin is
placed at the distal end of the link 3 to coincide with axis 4. From
frames {2} and {3}, 6, = 0, o = 0 and a; = 0. Note that for
prismatic joint dy is the joint variable.

Frame {4}: z,-axisis aligned with joint axis 5 and origin of frame {4} is fixed at
the point of intersection of z,- and z,-axes. Note that this choice
makes the origin of frame {3} and frame {4} coincide. X4-axis is
fixed perpendicular to the plane containing z;- and z;-axes giving
o, =-90° dy;=0and g, = 0.

Frame {5}: Joint axis 6 gives the direction of zs-axis and origin of frame {5} is
placed at the point of intersection of z,- and Zs-axes. The xs-axis is
perpendicular to both z,- and zs-axes. This origin also coincides with
the origins of frames {3} and {4}. This gives parameters as
Qs=90°, ds =0 and a5 = 0.

Frame {0}: Frame {0} can now be assigned. Choose Zg-axis along joint 1 axis

pointing away from base link 0. Since joint 1 is revolute, origin of
frame {0} can be either chosen to coincide with the ground, giving a
constant value to parameter d, (equal to L,) or it can be placed on
axis of joint 2, to be precise at the intersection of joint 1 and joint 2
axes, giving d, to be zero.
Choosing the later, in the example, origin of frame {0} coincides
with origin of frame {1}. At the home position, Xg-axis coincides
with x,-axis giving a, = 0. The size of link 1, L, can be accounted
by multiplying the final kinematic model by a constant translation
transformation matrix with translation of —L, along z,-axis.

Frame {6}: Origin of frame {6} is placed at the tool point P and zg-axis is
aligned with zs-axis. Joint 6 being rotary, x¢-axis is fixed in the same
direction as xs-axis. The frames {5} and {6} give @ =0, dg = Lg
and ag = 0. The frame {6} or {xgy, 2} is same as the tool
frame {n o a}.

In each of the above, y;-axis of frame {i} gets fixed by the right hand rule.
The complete frame assignment is shown in Fig. 3.27 and the joint-link
parameters are tabulated in Table 3.9. In the frame assignments, wherever
1
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alternatives exist, the choice hag b
possible are zeros. This resylts
that has a small number of p
displacement variable for each
noted that 12 out of 18 constan

 been made so that as many fixed parameters as -
In the simplest possible direct kinematic model
On-zZero parameters. As in earlier example the
link is identified and tabulated in Table 3.9. It is
ts parameters are zero.

Table 3.9 Joint.link paramelers for Stanford manipulator

90° | L, 0, 6,
0 dy 0 dy
-90° | 0 6, 6,
0°1 0 |" 6 05
0ul: E¢ | 0 6,

coco oo o)

-0 o — o o e

The nextstep is to find the individual transformation matrices T (g,) between
successive links by substituting the joint-link parameter values in Eq. (3.5). As
usual to facilitate writing these matrices, four columns defining cos8;, sinf;, cos ¢;
and sin @; are appended to the joint-link parameters table, Table 3.9, for each

The six link transformation matrices are, thus,

[C; 0 =5 0
18 0 ¢ o .
Or (8= 0.0 0v.0]2 2.0 PN E v 1
oL R
G 08 07
% 0 -G -0
IT0)=[0.1 0 L|%"% - (352
020200 1
100 0]
.. l0100 |
2Ty(dy) =0 0 | ds (3.53)
o0 00t
C, 0"=5, 0
S, .0 G0
‘T 0)=l0 -1 0 0 . L
Lo o o 1]
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TG D 8, 07
Sy Q1=Cy0
‘T)={0 1 0 o0 (3.55)
(00 0 1 |
(G =8, 0 07
5 B0
Ts@)=[0 0 1 L (3.56)
0 0 0 1|

Finally, obtain the transformation of the tool frame with respect to the base
frame by substituting the individual transform matrices in Eq. (3.6) as
0T, s i 1 oy R R (3.57)
Substituting Eq. (3.51) to Eq. (3.56) in Eq. (3.57) and multiplying gives the
final result for °Tg as in Eq. (3.58). |

The manipulator (over all) transformation matrix Oi"6 represents the position
and orientation of end-effector as a function of the six displacement variables 6,
0,, d3, 0, 65 and 6, other parameters are constant joint-link parameters.

Out of the 16 elements of the 4 x 4 homogeneous transformation matrix only
12 elements of upper 3 X 4 matrix are significant. Hence, only a maximum of

12 equations can be non-trivial. These equations give the forward kinematic
model of the manipulator.

[ C,C,C4CsC GG, C,Cs S o
SSCCs | 488G CGCSs | f}gC;%iLﬁ
-C,5,55C; +C15,555 5_5'15455 +C! S4C5 s
—C1Cy 5,456 —C,C,8,C; 3:+C1.5'2C5 +C132d5f3 "
WS =80T S8, =5,
SICCiCsCo  =S1CCiCS  S,G,CS.L
or _ +C154CsCs E_CIS4C5S6 éSlC?C:ISS +C-:S| 4S sl
ST =515,855Cs 1 +5,5,5585 +C\S,S5 i L sLe (3.58)

| h 48,5, Cs L
—51C284Ss i =S1C84Cs IS S,C5 i 23
g e - PR 1481845 + G L,
............ E..C.'.....E.....L.S.‘..(.:.‘.-E.L.S.‘....”;“........‘........;.............A........A.,....
$C4CsC ¢ 5,04 CsS6 L =8,C4Ss { —8,C4 5L

—CSsCs 1 +C,858 | .
5 : P GG 4G CGLg +
+8254 56 b858,C A Ak ske + Cydy
................. : T A T S JE S
B 0 0 0 1

For given values of the joint displacements q; and other constant joint-link
parameters the end-effector position and orientation is obtained by equating °T
to the end-effector orientation and position matrix T, Eq. (2.31), that is,
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n, o, a, d,
0, a

& ]
-

o by, Sy

n, o, a

L0 0 0 1

(3.59)

&
RS

Equating the elements of matrices in Eqs. (3.58) and (3.59), gives 12 equations
as. . ; :
n, = GGC4CC — 5,5,C5Cq — C,8,85C5 — C,C,8,55 —8,C4Ss
ny, = §1C,C4C5Cs + C18,C5Cq — 5,5,55C5 — 5,C,54S5 + C,C4S
n, = 8;C4CsCs — Cy85Cq + 5,8,5
0, = GIGC4CsSs + 515,CsSg + C,8,555 — C,C,54Cs — S1C4Ce
y = =$1CCCsSg — C,8,CsSg + 8,5,5585 — 8,C,8,Cs + C1C4C
0, = 5,C4CsSg + C, 85S¢ + 5,5,C;
a, = C,C,C4Ss — §,5,85 + C,5,C;s
a, = 8,C,C4Ss + C,S,S5 + 5,5,Cs
a, = =5,C,Ss + G,Cs - |
d, = C,C,CySsLg — §,5,55Ls + C,S,CsLg + C;S,d5 — SiL,
d, = S;C,C4SsLg + C;S4SsLg + 8,5,CsLs + 5,,d3 + CiL,
d.i= 8Ol % GGl Cads

(3.60)

Using this direct kinematic model for the home position (68, = 0, =0, = 05 =
6; = 0° and d; = L,), assuming L, is minimum size of prismatic link, the end-
effector position and orientation compute as

n, o, a, 4] [LOO 0 7

Fie n}.ioy a, 4, . 01 O_ L, 3.61)
n, lf’_z__a_z__‘_lz_ 001 L+L

070 0 1] [000 1

This agrees with the coordinate system established in Fig. 3.27 and serves as a
good check for the correctness of the model. It is important to note that the above
12 equations (Eq. (3.60)) require 10 transcendental function calls, 36
multiplications and 35 additions. Considerable computational saving can be
obtained by calculating only 9 elements of the upper right 3 X 3. submatrix
demarked by dotted lines in T above, Eq. (3.61). The first column of 7" can be
obtained as a vector cross product of second and third columns. Further, if Lg is
made zero by shifting the end-effector frame origin (as was done in Example 3.4),
this will reduce the computations for d,, d, and d, significantly. This is left for the
reader to verify. :
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A R ERCISES T

3.1 Whatare the parameters for a link for kinematic modeling? Which of these
parameters are variable and which are constant for (a) a revolute joint,
and (b) a prismatic joint?

3.2 Compute the manipulator transformation matrix for the 3-DOF
manipulator arm with Cartesian (PPP) configuration. Three prismatic
joints are perpendicular to each other and a possible frame assignment i’
given in Fig. E3.2,

)

m T
0 XU
v 1L

Fig. E3.2 ' Frame assignnient for a 3-DOF Cartesian configuration arm

<>
;' - I
! |

3.3 A3-DOF cylindrical configuration arm of a manipulator has two prismatic
joints and one revolute joint. A typical cylindrical arm with joint offset is
shown in Fig. E3.3. Using the Algorithm 3.1 carry out frame assignments
and tabulate the joint-link parameters.

@I

= ag —»
Joint offset

Fig. E3.3 A 3-DOF cylindrical configuration arm

3.4 For the cylindrical manipulator arm in Exercise 3.3, obtain the individual -
link transformation matrices and the overall arm transformation matrix.
Verify your answer for the home position. :

3.5 The 3R wrist in Example 3.8 is an Euler wrist. Obtain the wris
transformation matrix for the Euler wrist, see Example 3.4,

]

el
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3.6 thr' Ehe l? 'l')(_)F"T.‘a“iPUlator arm shown in Fig. E3.6, assign frames and
aotain the Joint-link parameters, Also, determine the position of the tool

tip withrespect to the base frame {0}. Compare this kinematic model with
Exercise 3.3. |

Fig. E3.6 A 3-DOF RPR—conﬁguratfon manipulator

3.7 For the manipulator discussed in Exercise 3.6, obtain the rotation matrix
that describes the orientation of the tool relative to the base. Also, compute
the value of this rotation matrix for g = [60° 20 30°]".

3.8 For the manipulator discussed in Exercise 3.6, determine the
transformation matrices relating successive links. Also, determine its
forward kinematic model.

3.9 Obtain the tool transformation matrix for the 3-DOF articulated arm,
shown in Fig. 3.16, if its home position is shifted to that shown in
Fig. 3.17(b). Also, determine the tool position for g = [0 -90° 90°]” and
show that it is the same as the original home position.

3.10 Obtain the forward kinematic model for the SCARA manipulator of
Example 3.6 taking the base frame at the table, that is, base of the column.

3.11 For the 3-DOF robotic manipulator arm shown in Fig. E3.11, assign
frames to each of the links and determine the joint-link parameters and,
therefrom, obtain the direct kinematic model.

3.12 Given that the position of an object relative to the base frame of
manipulator in Fig. E3.11 as °P = [7.0 10.0 5.0]", determine the position
of this object relative to the tool frame.

3.13 For the SCARA robot discussed in Example 3.6, compute the rotation
matrix describing the tool relative to the base when the 4 X 1 joint-space
vector is g = [45° 45° 5 30°)7. Also, find the orientation of the tool in
ZYX-Euler angle representation for the given joint space vector.

3.14 For a 5-DOF, RRR-RR articulated configuration manipulator shown in
Fig. E3.14 obtain the forward kinematic model. ;
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Fig. E3.11 A 3-DOF PRP manipulator arm

LSS ANNS AN i
Fig. E3.14 A 5-DOF articulated manipulator

3.15 For Exercise 3.14, test the correctness of the forward kinematic model for
the home position. e

3.16 For the Stanford manipulator in Example 3.8 determine the tool point
position for ¢ = [#/2 —m/2 100 7 7/2 ~m/2]".

3.17 For the manipulator shown in Fig. 3.26 determine the coordinates of the
tool point for the joint displacements g = [30° —20° 50 0° —108° 34°]".

3.18 Consider the 6-DOF manipulator constructed by attaching an Euler wrist
(see Example 3.8) to the faceplate of the 3-DOF articulated arm shown in
Fig. 3.15. Attach frames to each link of this manipulator as per
Algorithm 3.1 and obtain its forward kinematic model.

3.19 Repeat Exercise 3.18 for the manipulator by fixing a roll-pitch-yaw wrist
to the faceplate of manipulator shown in Fig. 3.15.

3.20 A 3-DOF articulated configuration arm of a manipulator has all three
revolute joints. In a typical articulated arm, the joint design determines the

ERESIPTY

Scanned by CamScanner



Symbolic Modeling of Robots—Direct Kinematic Model -

joint range. The design of joints in Fig. E3.20 gives almost 360° joint
range b“l has joint offsetg (the articulated arm discussed in Example 3.3
has no joint offsets). Using the Al gorithm 3.1 carry out frame assignments,

tabulate the joint-link parameters and obtain the forward kinematic model
of the arm.

/ Fig. E3.20 A 3-DOF articulated arm with joint offsets

3.21 Why DH convention (Algorithm 3.1) does not give unique frame
assignment for a given manipulator? Explain. ;

3.22 “The forward kinematic model of a manipulator depends on the choice of
home position of the manipulator.” Comment on this statement.

3.23 Using the DH notation for frame assignment, is it possible to have the a
link with zero link length whereas the physical link on the manipulator
will have a finite link length?

3.24 What problems will be encountered if the frames are arbitrarily assigned
to develop the forward kinematic model of a manipulator? '

3.25 Why is it important to choose a frame assignment for an n-DOF
manipulator that gives a maximum number of zero joint-link parameters? -

3.26 The frame assignment of a manipulator is so carried out that it is found
that one of the link’s rotation is about y-axis of the frame instead of z-axis.
Can the transformation matrix of Eq. (3.3) be used for determining the
transformation matrix for the link?
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The Inverse Kinematics
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he direct kinematic model discussed in Chapter 3 determines the position :fnd

orientation of the end-effector (tool) for given values of :iqin;-llnk
displacements. In other words, it answers the question “Where is the origin of the
end-effector?” The direct kinematic model, thus, specifies the end-effector fl.'af'l_'lf.:,
frame {n} relative to the base frame {0}, for the n-DOF manipulator, which is
expressed as -

.-nx Q,t ax dx-|
n . : d.

0 “TIH7 =™ & % f1l=7 (4.1)
'I;;(.QDQZ'“" q”) E T; n, o, a, dz
L 0 gl

The joint displacements (¢, g, -+ g,) that lead the end~c?‘fcctor toa cerjtain
position and orientation T can be found by solving the kinematic model e_quat‘lqns
for unknown joint displacements. Moving each j{.)int by the respective _]Oll-lt
displacement, the location (position and orientation) of the ejnd-effectolr is
achieved. This is the inverse kinematic problem already defined in the prevr—ous
chapter, Section 3.3. It is possible that for the desireq cnd—f-:ft‘ector E_ocanol_l.
multiple or no solutions may exist. A rigorous definition for the inverse Kinematic
problem is: 3, . .

“The determination of all possible and feasible sets of joint va-rmbie.s‘.’whwh
would achieve the specified position and orientation of the manipulator’s end-
effector with respect to the base frame.” _ 1 ‘

In practice, a robot manipulator control requires kn.owlcc‘lgc of l‘ht.ﬁ end-effector
position and orientation for the instantancous location of each J(?mt as well as
knowledge of the joint displacements required to place the end-effector in a new
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location. Therefore, direct and inverse kinematics are the fundamenta] prohlems' _
of utmost importance in the robot manipulator’s position control. Many industﬁal |
applications such as welding and certain types of assembly operations requirg
that a specific path should be negotiated by the end-effector. To achieve thig, i is |
necessary to find corresponding motions of each joint, which will produce the
desired tool-tip motion. This is a typical case of inverse kinematic applicatiop

The manipulator transformation matrix T represents the orientation R a;1d
position D of the end-effector with respect to the base frame as:

r[ R_iD
"o 0 bf'i'] (42)

The position and orientation of the end-effector is collectively referreq 5
configuration of the end-effector. The configuration of the end-effector i
represented by three position components as displacements alon g three orthogong]
axes of base frame and three rotations about the base frame axes. These sjx
components can be represented by a six dimensional space called configuration
space or Cartesian space. The kinematic description of orientation of the eng.
effector with respect to the base frame can be accordin g to any of the conventiops
outlined in Chapter 2. The configuration, or position and orientation, of the end.
effector is a function of joint displacement variables q,, g, ... g, as shown in

Fig. 4.1.
. X,
’i"'
O S ’Q\‘é End-effector
-,
ro Y, Zn

A XN

Fig. 4.1 Configuration of end-effector as a function of joint displacements

For an n-DOF manipulator the set of n joint displacement variables is
represented by a n x 1 vector, The set of all n x 1 Joint displacement vectors
generates the joint vector space or joint space. The Cartesian space and joint
Space representations of a manipulator’s end-effector position and orientation are
related to each other by mappings shown in Fi g. 4.2, The direct kinematic model
is the mapping of joint space to Cartesian space, and the mapping from the
Cartesian space to the joint space is the inverse problem.

In other words, the inverse kinematics is the determination of the set of
positions and orientations in Cartesian space that are reachable by the origin of
the end-effector frame as the joint displacements vector g ranges over the\joint-
space. :

4
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Cartesian
Joint

Space
P Configuration

space

Fig. 4.2 Mappings between kinematic descriptions

The inverse kinematic problem is more difficult than the direct problem
because no systematic procedures exist for its solution. Inverse problem of every
manipulator has to be worked out separately. In this chapter, techniques to solve
the inverse problem are presented. First, the concepts of manipulator workspace,

solvability of kinematic equations, and existence of multiple solutions are
discussed.

41 MANIPULATOR WORKSPACE

The workspace of a manipulator is defined as the volume of space in which the
manipulator is able to locate its end-effector. The workspace gets specified by the
existence or nonexistence of solutions to the inverse problem. The region that can
be reached by the origin of the end-effector frame with at least one orientation is
called the reachable workspace (RWS). If a point in workspace can be reached
only in one orientation, the manipulatability of the end-effector is very poor and it
is not possible to do any practical work satisfactorily with just one fixed
orientation. It is, therefore, necessary to look for the points in workspace, which
can be reached in more than one orientation. Some points within the RWS can be
reached in more than cone orientation. The space where the end-effector can reach
every point from all orientations is called dexterous workspace (DWS). It is
obvious that the dexterous workspace is either smaller (subset) or same as the
reachable workspace.

As an example, consider a two-link nontrivial (2-DOF)-planar manipulator
having link lengths L, and L,, as shown in Fig. 4.3(a). The RWS for this
manipulator is plane annular space withradii ry=L; + Lyand r, =L, - L,|, as -
shown in Fig. 4.3(b). The DWS for this case is null. Inside the RWS there are two
possible orientations of the end-effector for a given position, while on the
boundaries of RWS, end-effector has only one possible orientation. For the
special case of L, = L,, the RWS is a circular area and DWS is a point at the
center, as shown in Fig. 4.3(c). It can be shown that for a 3-DOF redundant planar
manipulator having link lengths L,, L,, and Ly with (L, + L,) > L;,the RWS is a
circle of radius (L, + L, + L,), while the DWS is a circle of radius (L; + Ly - L,).

The reachable workspace of an n~-DOF manipulator is the geometric locus of
the points that can be achieved by the origin of the end-effector frame as
determined by the position vector of direct kinematic model..To locate the tool
point or end-effector at an arbitrary position with an arbitrary orientation in 3-D
space, a minimum of 6-DOF are required. Thus, for-a 6-DOF-manipulator arm,

.
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(a) Two DOF planar manipulator

WS:IJ
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(b) L1=Lsp (c)L=L1=Ly

Fig. 4.3 Workspace a of a two-link planar manipulator

the dexterous wm‘kspace may almost approach the reachable workspace. The
reachable work envelops of standard mampula[m' configurations have been
discussed in Chapter 1.

The manipulator workspace is characterized by the mechanical joint limits in
addition to the configuration and the number of degrees of freedom of the
manipulator. It is important to note that in Fig. 4.3, the workspaces are specified
‘assuming a full 360° rotational joint range for each revolute joint. In practice, the
joint range of revolute motion is much less than 360° for the revolute joints and is
severely limited for prismatic joints, due to mechanical constraints. This
limitation greatly reduces the workspace of the manipulator and the shape of
workspace may not be similar to the ideal case.

- To understand the effect of mechanical joint limits on the workspace, consider
the 2-DOF planar manipulator with L; > L, and joint limits on 6, and 6, as:

-60° < 6, £ 60° 4.3)
-100° < 6, < 100°

For these joint limits, considering 6, = 6, = 0 as home position, the annular
workspace in Fig. 4.3(b) gets severely limited. The workspace, obtained
geometrically, is not annular any more, rather it has a complex shape and is
defined by contour ABCDEFA in Fig. 4.4.

Thus, the factors that decide the workspace of a manipulator apart from the
number of degrees of freedom are the manipulator’s configuration, link lengths,
and the allowed range of joint motions.

42 SOLVABILITY OF INVERSE KINEMATIC MODEL

Inverse kinematics is complex because the solution is to be found for nonlinear
simultaneous equations, involving transcendental (harmonic sine and cosine)

i
i
-
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— RWS

L1.--L2_

Fig 44 Reachable wo'rks;_mce of a two-link planar manipulator with joint limits

functions. The number of simultaneous equations is also generally more than the
number of unknowns, making some of the equations mutually dependent. These
conditions lead to the possibility of multiple solutions or nonexistence of any
solution for the given end-effector position and orientation. The existence of
solutions, multiple solutions, and methods of solutions are discussed in the
following sections.

42,1 Existence of Solutions

The conditions for existence of solutions to the inverse kinematic problem are
examined first. It is obvious that if the desired point P lies outside the reachable
workspace then no solution exists. Even when P is within reachable workspace,
not all orientations are realizable, unless P lies within dexterous workspace. If
the wrist has fewer than 3-DOF to orient the end-effector, then certain classes of
orientations are not realizable. To examine the reasons for this consider Eq. (4.1),
the direct kinematic model. _ _

As the last row of the matrix UTH in Eq. (4.1) is always constant, it can yield a
maximum of 12 simultaneous equations, which are nonlinear algebraic equations
involving transcendental functions in n unknowns (the joint variables). Out of
these, nine equations arise from the rotation matrix (3 X 3) and three from the
displacement vector. The nine equations of the rotation matrix involve only three
unknowns corresponding to the orientation of the end-effector expressed by Euler
angles or roll-pitzh-yaw angles. This means that there are only six (three from
orientation and three from displacement) independent constraints inn unknowns.
This leads to a very important conclusion. For a manipulator to have all position
and orientation solutions, the number of DOF n (equal to the number of
unknowns) must at least match the number of independent constraints. That is, for

general dexterous manipulation
n26 (44)
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This is a necessary but not sufficient condition for the existence of solutiong to
the inverse problem. In addition to these six independent constraint equations, the
tool position and orientation must be such that the limits on the joint motions are
not violated. For manipulators with less than or more than 6-DOF, the solutiong
are more complex. When degrees of freedom are less than six, the manipulatop
cannot attain the general goal position and orientation in 3-D Space-
mathematically it is an over-determined case with six equations in less than six
unknowns. The case of a manipulator, with more than 6-DOF, is an
underdetermined case, as there are only six independent nonlinear simultaneoyg
equations in more than six unknowns.

It is seen from the above discussion that a manipulator with 6-DOF (such ag
the one considered in Example 3.8), the direct kinematic model yields a set of Six
independent equations in six unknowns. These six equations form a determinate
set of simultaneous equations, which can be quite difficult to solve. It may be
recalled that in direct kinematic model it was emphasized to choose the frames,
which make as many of the joint-link parameters as possible, to zero. This leads
to less complex kinematic equations and, hence, relatively simpler inverse
solutions. For the case of a general mechanism with all nonzero-link parameters,
the direct kinematic equations are much more complex and so will be the inverse
solutions.

—_—

4.2.2 Multiple Solutions

The existence of multiple solutions is a common situation encountered in solving
inverse kinematic problem. Multiple solutions pose further problem because the
robot system has to have a capability to choose one, probably the best one.
Multiple solutions can arise because of different factors. Some common
situations, which lead to multiple solutions, are discussed as follows.

Consider the 2-DOF planar arm of Fig. 4.3(a) with a wrist having just one
DOF. There are two sets of values of joint displacements (8,, 6,) and (67, 6), as
illustrated in Fig. 4.5, which lead to the same end-effector position ard orientation

ol

Fig. 4.5 Multiple solutions due to parallel axes of revolute joints
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for point P Inthe Conﬁg”f‘a_ﬁﬁn space, both solutions are identical as they produce
sam.e co.nf-lg-uranon (position and orientation) of end-effector but are clearly
distinct 1n joint space, i

The 501““?“ @1: 0,) is ‘elbow-up’ position, while solution (0, 65) is the
‘clbow-down position. Out of these, elbow-up solution may be preferred as in
elbow-down solution joint-link may collide with objects lying on the work surface
or the work table itself. The two solutions are obtained because the axes of two
consecutive revolute joints of the arm are parallel. If more than two joint axes are
parallel, the numbers of solutions multiply.

Another cause for multiple solutions is the existence of tri gonometric functions:
in ther equations. The harmonic nature of sine and cosine functions gives same
magnitude for angles in multiples of 7 radians. For example, yaw, pitch, and roll
motions of the RPY wrist for two sets of joint displacements (6,, 65, 65) and
(67, 62, 65) with 67 = 180° + 6, 6, = 180° - 6, and 8} = 180 + 6, will lead to
the same orientation of the wrist. This can be easily verified.

Similarly, if the three motions of the wrist are roll, pitch, and roll; two sets of
joint displacements (6, 0,, 6;) and (6}, 65, 6%) with 6/ = 180° + 6, 65 =— 6,
and 875 = 180° + 6, will lead to the same orientation of the wrist. With multiple
solutions for positioning and orienting the end-effector, the number of solutions
may multiply factorially. _ '

The number of solutions also depends on the number of nonzero joint-link
parameters and the range of joint motions allowed. In general, the number of
ways to reach a certain goal is directly related to the number of nonzero link
parameters. For example, for a completely general rotary-jointed, 6-DOF
manipulator with all sixa; # 0, up to sixteen solutions are possible. A manipulator
is said to be solvable, if it is possible to find all the solutions to its inverse
kinematics problem for a given position and orientation. :

Multiple solutions also arise from number of degree of freedom. For example,
a manipulator with more than 6-DOF may have infinitely many solutions to the
inverse kinematic problem. A manipulator with more degrees of freedom than are
necessary is called kinematically redundant manipulator. The SCARA
configuration is an example of redundant manipulator. It has one redundant
degree of freedom in horizontal plane because only two joints (2-DOF) are
needed to establish any horizontal position. Redundant manipulators have added
flexibility, which can be useful in avoiding obstacles or reaching inaccessible

locations, as illustrated in Fig. 4.6.

/—— Can reach
parts in more ~—Cannot
than one way reach P

i

Cannot 1
reach —C
all parts Bin

P — Obstacle

o 2 oA e " A~ ~ P AN FFaA

Fig. 4.6 Use of redundant manipulator to avoid obstacles or reach around them
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4.3 SOLUTION TECHNIQUES

There are two approaches to the solutions to the inverse problem: closeq form '
solutions and numerical solutions. In the closed form solution, joint displace.
ments are dctmnincd as explicit functions of the position and orientatiop of the
end-effector. In numerical methods, iterative algorithms such as the Newtop.
Raphson method are used. The numerical methods are computationally intensjye
and by nature slower compared to.closed-form methods. Iterative solutions dg not
guarantee convergence to the correct solution in singular and degenerate cases,
Iterative numerical techniques are not discussed in this text.

The “closed form™ in the present context means a solution method based on
analytical algebraic or kinematic approach, giving expressions for solving
unknown joint displacements. The closed form solutions may not be possible for
all kinds of structures. A sufficient (but not necessary) condition for a 6-DOF
manipulator to possess closed form solutions is that either its three consecutiye
joint axes intersect or its three consecutive joint axes are parallel. The
kinematic equations under either of these conditions can be reduced to algebraic
equations of degree less than or ¢qual to four for which closed form solutions
exist. Almost every industrial manipulator manufactured today satisfies one of
these conditions so that closed form solutions may be obtained. Manipulator arms
with other kinematic structures may be solvable by analytical methods.

44 CLOSED FORM SOLUTIONS

Twelve equations, out of which only six‘are independent, are obtained by equating
the elements of the manipulator transformation matrix with end-effector
configuration matrix 7. At the same time, only six of the twelve elements of T
specified by the end-effector position and orientation are independent. For a
manipulator with less than 6-DOF, the number of independent equations may
also be fewer than six. Several approaches such as, inverse transform, screw
algebra, and kinematic approach and so on, can be used for solving these
equations but none of them is general so as to solve the equations for every
manipulator. A composite approach based on direct inspection, algebra, and
inverse transform is presented here, which can be used to solve the inverse
equations for a class of simple manipulators.

Another useful technique to reduce the complexity is dividing the problem into
two smaller parts — the inverse kinematics of arm and the inverse kinematics of
wrist. The solutions for the arm and wrist, each with, say, 3-DOF, are obtained:
separately. These solutions are combined by coinciding the arm end-point frame
with the wrist-base frame to get the total manipulator solution.

4.4.1 Guidelines to Obtain Closed Form Solutions

The elements of the left-hand side matrix of Eq. (4.1) are functions F'f the n joint
displacement variables. The elements of the right-hand side matrix T are the

.
B |
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desired position and orientation of the end-effector and are either zero or constant.
As the matrix equality implies element- -by-element equality, 12 equations are
obtained. To find the solution for # joint displacement variables from these 12
equations, the following guidelines are helpful.
(a) Look for equations involving only one joint variable. Solve these
- equations first to get the corresponding joint variable solutions.
(b) Next, look for pairs or set of equations, which could be reduced to one

equation in one joint variable by application of algebraic and
trigonometric identities..

(c) Use arc tangent (Atan2) funcuon instead of arc cosine or arc sine
functions. The two argument Atan2(y, x) function returns the accurate
angle in the range of -7 < < by examining the sign of both y andx and
detecting whenever either x or y is zero.

(d)y Solutmns in terms of the elements of the position vector components of

T are more efficient than those in terms of elements of the rotation
matrix, as latter may involve solving more complex equations. |

(¢) Inthe inverse kinematic model, the right-hand side of Eq. (4.1) is known,
while the left-hand side has n unknowns (g, g5, ..., g,,)- The lcft-hand 31de
consists of product of n link transformation matnces thatls g T

| B i B i Tl , | (45)

Recall that each "IT is a function of only one unknown q;- Prcmultxplymg

both sides by the inverse of °T, yields -

1 < I A, R T [OT[]'IT . (4.6)

The left-hand side of Eq. (4.6) has now (n—1) unknowns (g,; g3, ..., q,) and
the right-hand side matrix has only one unknown, the g,. The matrix elements on
the right-hand side are zero, constant, or function of the joint variable g,. A new
set of 12 equations is obtained and it may now be possible to determine ¢, from
the elements of resulting equations using guideline (a) or (b) above. Similarly, by
postmultiplying both sides of Eq. (4.5) by inverse of ""'T,, unknown g, can be
determined. This process can be repeated by solving for one unknown at a time,
sequentially from ¢, to g, or g, to q;, until all unknowns are found. This is known
as inverse transform approach.

The closed form solutions for the inverse kinematic model has been using the
above guidelines are now illustrated with examples. For some of these examples
the direct kinematic models have been obtained in Chapter 3. The multiple
solutions and conditions for existence of solutions are also discussed. The first
example considered is of the 3-DOF articulated arms solved in Example 3.3.

SOLVED EXAMPLES

Example 4.1 Articulated arm inverse kinematics

For the 3-DOF articulated arm, whose kinematic model has been obtained in
Example 3.3, determine the joint displacements for known position and
orientation of the end of the arm point.

b
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Solution  Let the known position and orientation of the endpoint of arm be give |
by 1
| (1 fi2 M3 hg
21 T N3 Iy
I My I3 Iy )
L0 OonQiva ]

where each r; has a numeric value.
To obtain the solutions for joint variables (6}, 6,, 63), in Eq. (4.7) T'is equateg
to overall transformation matrix for the 3-DOF articulated arm T, derjyeq in
Example 3.3, that is
(GG =CiSy3 =8, G(L;Cp3 + [,G)] (71 N2 ns Ay
SiCs =853 G Si(LiCy + L,G) | _|nmy mp ny oy ;
S G 0 LS+ LS, B T hy By )
0 0 0 1 1 lo o o0 1]

Equation (4.8) gives 11 nontrivial equations for the three unknown joint
variables, ), 6,, and 6, appearing on the left-hand side. The determination of
solution for these three joint variables for known r; is the inverse kinematic
problem and is worked out as follows.

Step 1 Applying guideline (a), an inspection of elements of the matrices on
both the sides of Eq. (4.8) gives that 6, can be obtained from element 3 of row |.
The element (1,3) of left-hand side matrix has a term (=S,) in only one variable 6,
. and a constant ry; on right-hand side and, hence, it can give angle 6, from

—sin ) = r;. However, according to guideline (c) this is not preferred as correct
quadrant of the angle can not be found. Alternatively, applying guideline (b), 6,
can be isolated by dividing element (2, 1) by (1, Dor(2,2) by (1,2) or (1, 3) by
(2,3)or (2,4) by (1,4). Out of these, the last one is preferred as per guideline (d).
Thus, equating element (1, 4) and (2, 4), on both sides of the matrix two equations
are obtained as

Ci(LiCps + L,Cy) = ry, 4.9)
SI(L3Coz + LyCy) = ryy (4.10)
Dividing Eq. (4.10) by Eq. (4.9) gives :
S (4.11)
G a
Therefore, according to guidline (c),
0, = Atan2(ray, ry4) (4.12)

Step 2 The other two unknowns, 6, and 6; cannot be obtained directly. To geta
solution for 6, and 6,, inverse transform approach, guideline (e), is used. To
isolate 5, both sides of Eq. (4.8) are postmultiplied by (2T3)“l. This will give

T ', = TCT,T @.13)

1
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From Eq. (3.21), 2T} is

6y sk 1,C
8 G 0 Ls
2 3
P 3 393
3 0 0 1 o (4.14)
L0 0 0 |
The inverse of 2T3 is obtained using Eq. (2.53) as
3 _C3 S3 0 “‘L}ﬂ
L 2nTd _
[2331'1:[ ...... % ATRD] -5 6 0 0 (4.15)
0 00 | Q- .0 10
L0 gy

Substituting oTl and sz from Eqs. (3.19) and (3.20), Example 3.3, T from -
Eq. (4.7) and T3] from Eq. (4.15), in Eq, (4.13) gives
GG -GS, S LGG [ Catiy = Siy Syhy + Cytig 1y —Lgry + 13y ]
SC =88, -C LS, Ciny = Syry Sy = Syryy 1y —Lyry + 1y
$ G 0 LS, Cany = Syrp Syryy = Sarp 1y —Lgryy + 1y
| 0 0 o 1 0 0 0 1

- L

n

(4.16)

Note that the left-hand side of Eq. (4.16) has only 6, and 6, terms and the

right-hand side has only 6, terms. A close examination of both sides reveals that

equations obtained from elements (1, 4), (2, 4), and (3, 4) are only function of 0,

and 6,. Thus, with use of some algebra and trigonometric identities, 6, can be

eliminated and solution for 6, is obtained. Equating the elements (1,4), (2.4,
and (3, 4) of the two matrices, three equations obtained are

L,C\Cy=—Lyry + 1y 4.17)
L,S\Cy = =Lyry + 1y (4.18)
LSy =—Lyrs + 13y (4.19)

By squaring Eqs. (4.17) and (4.18), and adding gives,
L%CE?(CIE + 8t) = (—L3n; +14)* + (=Lyny +715, )

From this 6, is eliminated because C{ + S7 = 1, thus

LG, = i\(F_Lﬂ'll +114)" + (Lyry + 1)’ (4.20)
Dividing Eq. (4.19) by Eq. (4.20), gives
S, _ =Ly + 1y 421)

G V(= Loty + 114)* + (=Lyry + 13,
Hence,

0, = Atanz((*igr;l +ry)t J(—L3r,, +1n,)? +(=Lyry, + 1,y )? ) (4.22)
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- Step 3 The solution for 6, is obtained by first solving for (6, + 63).!Div_iding_. i
element (3,1) of Eq. (4.8) by element (_3,2) gives :

S I :
or 6, + 6y = Atan2(ry,, ry;) . (4.24)
Thus, i : ,
63 = Atan2 (ryy, ry;) - 6, (4.25)

Equations (4.12), (4.22), and (4.25) give the complete solution for the 3-DQF
articulated arm as expressions for the joint displacements 0, 6,, and 65 in termg
of known arm end-point position and orientation. Note that the above solution is
one of the possible sets of expressions. Alternate expressions for 6;, 6,, and 6,
would be obtained if instead of equating the chosen elements of the matrices,
other elements are used, or instead of isolating 63, 6, is isolated by premultiplying
both sides with (OTI)‘E. It is also possible to find solution without use of the
inverse matrix approach and instead of using algebra and trigonometry. For
instance, after solving for 6,, (6, + 6;) can be obtained from elements (3, 1) and
(3, 2) and through trigonometric manipulation, 6, and 6, are obtained.

Example 4.2 Inverse kinematics of RPY wrist |

For the 3-DOF RPY wrist kinematic model was obtained in Example 3.4,

Eq. (3.27), as A

__CI 52C3 + SIS3 .C152S3 + SIC3 CICZ 0_

OT = _Sl 5263 T CIS3 S182S3 = C[ C3 Sl Cz 0
? €. ¢ ~C,Sy S,

0 0 0 1

(4.26)

Determine the solution for the three joint variables for a given end-effector
orientation matrix T'g.

(n, o, a, 0]
n, 0, a; O
= ; 4.27
Te ns0p a;= ¢ (422
[ g g 1

Solution The overall transformation matrix ”T3 and end-effector matrix Tg
represent the same transformations. Thus, equating Eqgs. (4.26) and (4.27) gives

n, o, a, 0 —CISZC:{ + 8153 C]S:S} + S] CJ CIC3 0

n_‘. O}_. a}, 0 _ _SISEC-_; e C]S3 SISES3 — Cl C'{ StC2 0 (4 28)
g o0, a, 0 a G, (G, -G, S, S, 0 |
0 0. 0.1 0 0 0 L
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The elements of the matrix on left-hand side of matrix equation are known '
(given), while, the elements of matrix on right-hand side have three unknown

joint variables 6}, 6, and 6,. To get the solution for these joint variables, the more

consistent analytical approach (guideline (¢)) is used here.

Guideline (e) suggests premultiplying the matrix equation, Eq. (4.28) by
inverse of transformation matrix °T'| involving the unknown 6; and from the
elements of Ehc resultant matrix equation determine the unknown. Recall that the’
right-hﬂ'z‘d side of Eq. (4.28) is the product of three transformation matrices o i
IT, and T each involving onc unknown 6,, 6, and 6, respectively.

This process is continued successively, that is, moving one unknown (by its
inverse _transfonn) { om'right-hand side of the matrix equation to the left-hand
side of the matrix equation and solving it,'then moving the next unknown to the
left-hand side, until all unknown are solved. TS '

To solve for 6,, both sides of Eq. (4.28) are premultiplied by O7!. From
Egs. (3.24) — (3.26) -' s

c, 5 0 O ny o a, Y01 'r-5, 0' ¢, OTC; -8 O 07
0 0 1 0fn o, a 0 |C 05 0]S G 0 0
S -C, 0 Ofn, o, g, 0% e O -0 0 10
o 0o o 1o o o '1tJ]'Llo o o 1o 0O O 1]
or
"+ S, Co,+S0, Ca +Sa, 01 [-$6 S8 G 0]
n, 0. a, 0 | GG -G8, S, 0
Sn.-Cn, S0,-Co, Sa,-Ca, 0 % G 89
Lo 0 0 S0 1 g/ g B Y
' ' (4.29)

The left-hand side of Eq. (4.29) has one unknown (6,) and the right-hand side
has two unknown (6, and 6,). Scanning the elements of both the matrices in
Eq. (4.29), the equation in one unknown (6,) is obtained by equating elements

(3, 3). That is,

5,8, —Cia,=0 (4.30)
a,
or 20 tan 6, = —
Cl ay

which gives
0, = AtanZ(ct},, a, 4.31)
The process of further premultiplication is not necessary because the solutions
for the remaining two unknowns (6, and 6,) can be obtained trom Eq. (4.29).
Equating (1, 3) and (2, 3) elements on both sides in Eq. (4.29) gives
C, = Cya, + 54y
S, =a, (4.32)
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From these two equations the solution for 6, is obtained as , .
6, = Atan2(a,, Cya, + Sa,) (4.33)

Equating elements (3,1) and (3, 2) of Eq. (4.29) gives e T
Sy=8n.-Cn,

C3 = Slox - Clﬂy (4.34)
Which lead to the solution for 6; as
63 = AtaHZ(Slnx - C|ny, Slox —_ Cloy) (4‘35)

The inverse transform technique is to move one unknown to the left-hand sjde
at a time and solve it. Therefore, it is also possible to achieve thijg by
postmultiplying instead of premultiplying by the inverse transform matrix
involving an unknown. This is illustrated here.

To solve for 6y, that is, to move it to the left-hand side, postmultiplying both
sides of matrix equation Eq. (4.28) by 21! gives

n, o, a, 0OC; §; 0 0] [C, 0 § O]-S, 0 C, 0]
n, o, a, 0|-S; C; 00 [S 0 -C, 0]cC, 05,
Hi.op & OF 0, 0. .5L.0 0O 1 0 OO0 1 0 o
L0 0 1o o o1 (OO0 O IO 0 O 1]
or

C3nx = S3OJ.‘ S3nx + C3OI a; 07 '_'_C152 Sl CIC2 07
C3n}. y S3ny +C30y a G _SiSZ _Cl SICZ 43
CBHZ — S3Oz S3nz +C3OZ a, 0 C2 0 SZ 0 ( ‘ 6)

0. 4 0 0o 1] Lo o o0 1

o

™ 330

-
|

Comparing elements of the matrices on both sides, the elements (3, 2) gives
S3n,+ C30,=0
and, thus, the solution for 6 is

0, = Atan2 (—o,, n,) (4.37)
Similarly, from the elements (3,1) and (3, 3), 0, is obtained as
6,= Atan2 (a, Cyn,— Sy0,) (4.38)
and from the elements (1, 2) and (2, 2), 0, is obtained as
0, = Atan2(Sy n, + Cy0,, ~Syn, — Cs0,) (4.39)

In this_ example, premulitplying or postmultiplying gives solution of similar
compleX{ty but this may not be always the case. The decision to premultiply or
postmultiply is left to the discretion of the reader.

Example 4.3 SCARA manipulator inverse kinematics

Analytically solve the inverse kinematic problem for the 4-DOF SCARA

conﬁg_uration manipulator given in Fig. 3.22, Example 3.6. Discuss the conditions
for existence and multiplicity of solutions.
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solution 1-??1- [ho?: SCARA manipulator of Example 3.6, equating T, from
“Eq. (3.40) with T'in Eq. (4.7) gives

(Cios Sioa-

0 LCo+LyG] [r o

Spa —Cas 0 LS, +L,S, | om
9 0 1 Lp+dy- ) LTIV
0 0 0 1 i 0 0

UE
I3

133
0

T4
oY

I3y

(4.40)

3

The solution for joint displacement d, is directly obtained by equating the
elements (3, 4) on both sides of Eq. (4.40),

or

Loy+dy—Ly=ry

(4.41)

Next, to solve for 6, elements (1, 4) and (2, 4) are compared. This gives

L,Cy, +L,C, =ny
L,S;, + Ly S =1y

(4.42)
(4.43)

Squaring' lj:qs- (4.42) and (4.43), adding and simplifying using the
trigonometric identity cos (o + f§) = cos e cos - sin o sin f3, gives

Since

2
L+ 0 2L, LG =n + t
) = s + 1 — L] -
20,1,

S, =+i1- C?

the solution for 6, is obtained from Egs. (4.45) and (4.46) as

0, = Atan2(S,, C,)

(4.44)

(4.45)
(4.46)

(4.47)

Now that 8, being known, Eqgs. (4.42) and (4.43) can be used to compute 6,.
These equations are written as

or

Let
with

and

Ly(C,Cy = 58)+ LG = ny
Ly (8,Cy + C\Sy) + Ly S, = ry
(Ly; + L,G)C = (1,5,)8, =1y
(Lyy + LGS +(1h52)C = 1y

(Ly, + L,Cy) = rcos ¢ and (LySy) = rsin @

pealll L5 LS )
0= Alan"( fovy ivhabs tLG )

r r

Egs. (4.50) and (4.51) reduce to

rcos (6, +¢)=ny
rsin (0, +9) =ry

(4.48)
(4.49)
(4.50)
(4.51)
(4.52)

(4.53)

(4.54)

(4.55)
(4.56)

Scanned by CamScanner



(Iﬁl Robotics and Control

ey 8
From Eqs. (4.55) and (4.56), 6, is obtained as
6, = AtanZ(-rz—“,ﬂ-)- "
! =y (4.57)
: Ny Ny S, L +L,C
= At 2(—2-*-.—’:‘--)-;&1( nz(-ﬁi-_ SHT e
0, an e a ; ; (4.58)

With 6,, 6, and d; determined, only one variable, 6, is unknown, From
elements (1,1) and (2, l) the equations are

Ciaa =1y , (4.59)
Sta=ry (4.60)
Equations (4.59) and (4.60) give 6, as
s Gt 6, + 0,- 0, = Atan2(r,,, r“)
or 6, = 6, + 6, — Atan2 (r,,, r“) (4.61)

The complete closed form solution for the joint displacements 6;, 6,, d; and 6,
of SCARA manipulator, 1s given by Egs. (4.58), (4.47), (4.41) and (4. 61)
respectively, as explicit functlonq of the manipulator’s tool posmon and
orientation. - :

Existence of Solutions

Solutions to the inverse kinematic problcm of a given arm exist, that is, the given
Cartesian position and orientation of the tool is within the manipulator’s
workspace if the following condition is satisfied:

“Since sin and cos functions take values in the range [-1,1], right- hand side of
the Eq. (4.45) must lie in the range [-1,1].”

Again, these solutions are for full 360 degrees of rotation for the revolute joints
and limitless translation for the prismatic joint. The mechanical constraints,
however, will permit only such solutions for which the joint variables take a value
that lies in the range of motions allowed.

Multiplicity of Solutions

Due to the presence of the square root in Eq. (4.46), there are two solutions for &
for a given position and orientation of the tool with respect to the base. From
Egs. (4.57) and (4.61), observe that there is one set of solution for 6, and 8,
corresponding to each value of 8,. Thus, the number of solutions to the inverse
kinematics problem of the given SCARA arm is two. Note that multiple solutions
exist due to the fact that revolute joint axes 1 and 2 are parallel.

Example 4.4 Numerical solutions for a 3-DOF manipulator

For the 3-DOF (RRP) configuration manipulator, shown in Fig. 4.7, the position
and orientation of point P in Cartesian space is given by

]
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[0354 0866 0354 0106

7=|"0612 0500 -0.612 -0.184 (4.62)
0707 0 0707 0212
Lo 0 0 I ]

Detcx:mme all values Of_rall'joint variables, that is, all solutions to the inverse
kinematic problem. The joint displacements allowed (joint limits) for three joints

are: ~100° < 6, <100°, -30° < 8, < 70° and 0.05m < d, < 0.5 m. Identify the
feasible solutions,

Solution A manipulator with this configuration is another common structure
widely used in industrial robots, as it is very effective in material handling and
other applications, and gives a spherical workspace. The first two joints are
revolute joints and provide motion in two perpendicular planes. Their sweep
generates a constant radius sphere. The third prismatic joint provides the reach to
the arm point where the wrist is attached. The three joint axes intersect at a point.

The forward kinematic model is obtained first. For the forward kinematic
model, the frame assignment for the home position is carried out first. While
assigning frames it is observed that the link dimension L, can be eliminated from
the kinematic model by choosing the origin of frame {0} to coincide with origin
of frame {1} at joint 2 (see Example 3.3). The link dimension L, can be made
zero by modifying the design slightly as shown in Fig. 4.8 such that the axis of
prismatic link passes through the origin of frame {1}.

The final frame assignment with the origin of three frames, frame {0},
frame {1} and frame {2} at the same point is shown in Fig. 4.9. This minimizes
the number of non-zero parameters as well as satisfies the necessary condition for

existence of closed form solutions.
The joint-link parameters are tabulated in Table 4.1
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Fig. 4.8 3-DOF spherical arm in home position: 6,=6,=0and d; =005

-

—_—

_ _—===——"Same origin

Fig 4.9 - Frame assignment for spherical arm with horizontal home position

Table 4.1 Joint-link parameters for spherical arm

The three link transformatlon matrices T, 'T 2. T, °Ty and the overall am
transformation matrix T3 are obtained as
[C, 0 S 0]
S 0 -C, 0
or (6 =] ! I (4.63)
0O 1 0 0
| 040 0.1
r‘Cz 0 _Sz 0
S 0 G 0
! ALl 2 4.64)
Ty(6,) = (
=15 0 o
L0 0 0 1 |
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’Ty(dy) =

and, thus,

o O = O

S -~ o
S

[ GG,
$,G,
S
0

0T3 = 0T1 ITZ 2T3 =

L.

-
G
0
0

=Ci$,

—5,5,
G
0

(4.65)

-a’3ClS2'.f'
~d38,5,
4.66)
d3C, :
ki

First, a generalized solution is worked out, as in previous examples and then
the Vall:les fro‘n? Eq. (4.62) will be substituted to get specific solutions. Let the
arm point position and orientation be specified as in Eq. (4.7).

The kinematic model equations are thus, obtained b

Eq. (4.7) giving

GG -5 -GS,
S5G G =55,
$S 0 G

. 0 0 0

-GS, T
~d3S5,5,
d3C,

; ¥

ni
o)

&Y

e

1

ha
oY)

£7)

0

i3
3

I3
0

N4
o7

T34

L

y equating Eq. (4.66) and

(4.67)

The preferred solutions for joint displacements are obtained by comparing
elements (1, 4), (2, 4) and (3, 4) in Eq. (4.67). The resulting equations are

—d3C1S; =114 (4.68)
—d358; = 1y (4.69)
dyCy =1y : (4.70)
Dividing Eq. (4.69) by Eq. (4.68) the solution for 6, is
- 91 = Atan2(—r24, —I‘M) (4.71)
Squaring and adding Eq. (4.68) and Eq. (4.69) gives
d2 BACE+ 57 Y=2 + 15,
or dyS, = £ 1y + i @72
Dividing Eq. (4.72) by Eq. (4.70) gives solution of 6, as
6,=A tanZ(i \}r& + rﬁ, ; r“) (4.73)

The joint displacement d- for joint 3 is obtained by squaring and adding
Egs. (4.68), (4.69) and (4.70). Since the displacement d; cannot be negative, only
positive sign is used. Thus, :

dy =+ + 13, + 15y (4.74)
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The numerical values for joint displacements are obtained by substituting the

values from given arm point position and orientation matrix, Eq. (4.62), intg
Egs. (4.71), (4.73) and (4.74). The specific solutions are:

9, = Atan2 (0.184, =0.106) = — 60°

6, = Atan2 (£/(0.106)* +(-0.184)2, 0212) = £ 45° @25

9, = Atan2 /(0.106)* + (<0.184)* +(0.212)% =0.30

The two possible solutioﬁ_s tlrc tabulated in Table 4.2,

Table 4.2 Two possible solutions for the specified arm point

The joint range specified for joint 2 is: —=30° < 6,< 70°. The solution 1 specifies
angle 6, as 6, =—45°. This violates the joint range constraint and, hence, solution
1 is not feasible.

Ekample 4.5 Inverse Kinematics of 5-DOF Manipulator

For the 5-DOF industrial manipulator discussed in .Examp_le 3.7, obtain the
analytical solutions of joint variables.

Solution  Let the end-effector tool point transformation matrix be given by

' N, 0 a dy]

n, 0y a, d}.

¥
nZOZaZdZ
000 1]

From the kinematic model obtained in Example 3.7, the overall transformation
matrix for the end-effector tool point is (Eq. (3.48))

T, = (4.76)

[C18234Cs + 8185 —C 833485 +8,Cs C\Cp3y Cy(L,Cy + LyCo3 + LsCoy)
81Cy34Cs = iS5 =51523485 = CiCs §iCozy Si(LrCr + LsCoy + LsCosa)

—Cy4Cs Cr3455 =Sy L= LS, — LySy — LsSan
; 0 0 0 l

0
I =

(4.77)

A close examination of Eqs.(4.76) and (4.77) clearly shows that no dire-ct
solution can be found for any of the joint-variables. Hence, the inverse matriX
approach of guideline (e) is used here,

In order to solve for first joint variable 6,, both matrices, Eq. (4.76) and
Eq. (4.77) are premultiplied by inverse of oTl (that is °77". This given left—harld
side matrix of equation as
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[ G 8y Co,+S0, Ca,+Sa, Cd,+Sd, 7]
L o St g, L
1My~ Cl”_‘r —S[O,t-u'{'C]Oy ‘-S|ai +C|ﬂ}. T'S]dx +;C]d}j
i 0 0 o0 I |
(4.78)
and the right-hand side of matrix equation is
[ 524G SpuS5 Coyy LsCoyy + L3y + LGy ]
7 = I, = ~Co4Cs CouSs Syyy LsSy + LySyy + 1S,
_SS _Cs 0 ‘ 0 ’
0 0 o 1 Y
(4.79)
or
i Cln_,'- +Slny Clox ‘ESIO}. Clax +_Sla}. C]dx + Sld)‘ T
-n, -0, - -a, -d, +L,
=Sine +Cin, =S80, +Co, -Sa,+Ca, -Sd,+Cd,
| i 0 0 1]
[ $34Cs S334Ss €y LsCpyy + LiCps + L, G, ]
_ —C3sCs Cy3Ss Sysq  LsSpy + L3Sy + Ly Sy (4.80)
~S; -C; 0 0 '
. @ 0 0 1 i

Comparing elements of Eq. (4.80), the single variable equations in 6, are
obtained from elements (3, 3) and (3, 4) as:

_‘Sldx +C1dy :0 (481)

Using the later, the solution for 6, 1s
0, = Atan2(d,, d,) (4.82)
From ratio of elements (3, 1) and (3, 2), solution for 6 is obtained as
-Ss ==8n, +Cn, —_—
-Cs = =S,0, +Co, .
or 65 = Atan2(=Sn, + Cyny, — Sj0, + Cy0,) (4.84)
The solution for remaining three variables 6,, 6; and €, is obtained by first
solving for 6, + 05 + 6,. Equating elements (1, 3) and (2, 3) gives
Cyyy = Cia, + 5 a, (4.85)
Sy = —d;
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which leads to ' |
| 9234= 92 +93 +84 - Atﬂl’lZ("ﬂz, Clax +Slay) : (4*86) 3
Premultiplying both sides of Eq. (4.80) by ('), gives
()™ OT) ' T = "1 T, 4.8

C Cy(Cyny +Syny) = Son,  Ca(Ciog +510)) = S)o,
~8,(Ciny + 8in,) = Cyny =53 (Cyo, +8,0,) - Cyo,
=81, +Cln3, =80, + Cyo,
i 0 0 .
C,(Cya, +8,a,) — 54, Cy(Cid, +81dy)—8,(d, — L)~ L,
-S,(Cia, +Sa,) - Coa,  —5,(Cid, +5d,)-C,(d, + L)

=Sa, + Clay ' _Sldx + Cldy
0 l :
[ 834Cs —S3uSs Gy LsCyy + LG5 ]
| =CuCs CyuSs Sya LSy + LG 4%
B 0 0 1 i
From elements (1, 1) and (1, 2), two equations are obtained:

G (C]nx_ +8n,) = Sy, = 534Cs _ (4.39)
C,(Cio, +510,)— 5,0, =—853,5s (4.90)

Dividing Eq. (4.90) by Eq. (4.89) and rearranging gives
_(Clox ‘Jf‘S]Gy)Cz +Szaz = tan 65[(61?1_‘, + S]ny)C2 - Sznz] (491)

s, _ tan8s(Cin, +Sn,)+(Cio, +S0,)
C, n,tanBs +o,
o &= AtanZ[tan 05(Cin, +Sin, )+ Cyo, + S0y, n, tan O + o,]  (492)
Similarly from elements (1, 4) and (2, 4) of Eq. (4.88), two equations ar¢
obtained after rearrangements as
LsCyy + LyCy = C\Cyd, + 85,Cody = S,(d, — L) = Ly (4.93)
LsSyy + L3Sy =—C,Syd, + 5,5,dy, — Cy(d, + L)
Substituting for C,, and S, from elements (1, 3) and (2, 3), respectively form
the left-hand matrix of Eq. (4.88) and simplifying gives _
LyCy = C\Cyd, +§,Cyd, = S, (d, = L) — L, — Ls(C,Cra, +8,Coay = S,a.) 4

L3S3 = _-CISde e Slszd}, = Cz (dZ + L])+ L5(CISB£IA‘ +S]5'20y +C2az) - |
(4.94) 4

or
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Form Eq. (4.94) 6, is obtained as

0, = Alanz{LJSJ ==C52d, =818,d, - Cy(d, + ;) + Ls(C,Sa, + 5,54, + C,a,), ]
L,C, = C1C'zd,, +8Cod, - S,(d, - L))= L, = Ls(C,C,a, +5,Cya, - S,a,)
' | (4.95)
The last unknown joint variable 6, is computed from Eq. (4.86).
0, =05,-6,-0, (4.96)

Example 4.6 Inverse kinematics for 6-DOF Stanford manipulator

Obtain all the joint displacements as explicit functions of the position and
orientation of the end-effector for the 6-DOF manipulator of Example 3.8 by
analytical method. Also, discuss the existence and multiplicity of solutions.

Solution  The given 6-DOF-manipulator arm has a wrist whose joint axes 4, 5
and 6 intersect at a point. This satisfies the necessary condition for existence of
closed form solutions. Hence, it is possible to solve the inverse problem in closed
form. : '
Let the given position and orientation of the end-effector with respect to the
base in Cartesian space be
(7, 0, a, dy]
T ny 0y ay.d, |
nZ OZ az dZ
| ¢ & 6 1
From Example 3.8, the manipulator transformation matrix (the forward
kinematic model) for thé given manipulator is given by Eq. (3.58) that is

FC1C2C465C6 CICZC4CSSG

(4.97)

-

: . ; C.S GG CySsLe
-8,5,CsCs i +85CsSs  : CiCCads |
1 5 i S[S‘;SSLE
~Ci5,85Cs | tC15pS58 | =5i545s i +C,S,CsLg

~GGSiSs | ~GGOSGs T TORGs {as s,

ﬂTﬁ o (4.98)

+8515,Cs g

Sch-CSCﬁ 52C4C556 _S')C4S5 —SEC.;SSLQ

+85848s i ASSaCe
............ L " 1 _
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Observe that in Eq. (4.98) neither single variable terms are present nor Simpj,
algebra (like division of two elements) will give single variable isolation, Hence
to find a solution two alternatives are: (1) matrix premultiplication 0;
postmultiplication to isolate one variable at a time, as was done in Example 4 1
and (ii) use more involved algebra and trigonometry. In this example latter'i;
used. 2 denf oy
Equating elements (1, 3), (1, 4), (2, 3), (2, 4), (3,.3) and (3, 4) in Egs. (4.97)
and (4.98), six equations are obtained.

CiCyC4Ss = 8518485 + C,5,C5 =a, - (4.999

Ls (C1CyCyS5 = 818485 + Ci83Cs) + CS,ds ~ §iL5 = d, (4100
51C,C4Ss + C, 8,55 + 8,5,Cs = a, ' (4.101)
Le(S1CaCySs + 18,55 +5,5,C5) + 8,8,dy + CiLy =d,  (4.1p)
=8;Ci8s+ C;Ci =a, | (4.103)

LS. e s Yo et Cd =d, (@104

Substituting Eq. (4.99) into Eq. (4.100) gives

Lea, + C,Sydy — S\L, =d,
or CSyd; — SiL, = d\ —Lea, (4.105)
Similarly, substituting Eq. (4.101) into Eq. (4.102) gives .

Lea, + 8,S,d; + C,L, = d,
oF _ $18,d; + CL, = d, - Lga, (4.106).
Squaring Egs. (4.105) and (4.106), adding and simplifying gives

S3d; + 13 =(d, - Lga,)* +(d, - Lga, )’

or S3dy = (d, - Lga,)* +(d, - Lga,)? — I (4.107)
Also, combining Eqs. (4.103) and (4.104), rearranging and squaring gives

Cydy =d, - Lga, (4.108)

or Cid; =(d;, — Lga,)> (4.109)

Equations (4.107) and (4.109) are solved for dj

dy = 1y(d, — Lea;)* +(d,; = Lsa,)* +(d, ~ Lga,)? - 12

The displacement of prismatic joint dy is always positive; therefore, the
negative solution is not valid. Thus

d; = W, = La,)? +(d, = Lga,)? +(d, — Lga,)* = L3 - ~(4.110)

|
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Thus, solution for the joint variable d,, which gives the joint displacement for
the prismatic joint, is found. Next, solve for joint displacement 6,. From
Eq. (4.107),

Spdy = £\(d, - Lga,)? +(d, - Lya,)* - L2 @.111)

Dividing Eq. (4.111) by Eq. (4.108), solution of joint variable 8, is obtained
as

6, = Atan2(£\/(d, ~ Lea, Y +(d, - Lod, - 13 , (d;  Lga, ) @.112)
Next, to solve for 6, Eqs. (4.105) and (4.106) can be used as they have only
6, as unknown. First, let the constants X 1 and K, be defined as -
Ky=8d; and K,=1L,
Substituting these constants in Egs. (4.105) and (4.106):
KiCy - K,8, =d, - Lga, (4.113)
K\S\ + K,C, = d, - Lga, (4.114)

The equations of this form can be solved by making trigonometric substitutions

K, =rsin ¢ and K, = r cos ¢ (4115
where r=+{K-12+K22

0= Atanz[fl--, ﬁ) 1 (4.116)

: L8N SN : :

Substituting K, and K, from Eq. (4.115) in Eqgs. (4.113) and (4.114)
: - d, - Lca
sin(9 - 9)) = =—== (4.117)
d, - Lca,

cos(p — 6;) =%ﬁ’ 4.118)

From Egs. (4.117) and (4.118),

do=T d,— L.,
06, =Atan2( U e J) (4.119)
r (r
Substituting for ¢, r, K,, and K, and solving for 6, gives
S,d
9,=Alan2[ e, 1{'2 - ]
JSEdi + 13 \/Sgdg + L5
d, - L, d,-La,
. Atana| —fx—cefr = f‘“ = J (4.120)
VStat+ 13 \Sid3 + 13 |

Thus, Eqs. (4.110), (4.112) and (4.120) give solutions for the first three joint
displacements 6,, 8,, and ds, respectively. -
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To obtain the solutions for the remaining three joint displacements 6,, 65
6, another approach will be used. It is possible to view the description o

—_—

»dngd
f too]

frame, frame {6}, with respect to frame {3}, the arm endpoint frame, along twq

different paths.

Path2 <«————

———» Path 1

L ]

Fig. 4.10 The transform graph for the manipulator

The manipulator transformation matrix T} is equal to the product of six link

transformation matrices
O _ O 1o 270 3 4 5
Te="T, T, T,°T,"Ts T

(4.121)

This can be represented graphically as shown in Fig. 4.10 with nodes
representing frames and edges representing the transform. From the graph in
Fig. 4.10 obscrve that there are two paths to traverse from frame {3} to
frame {6}, one is via frame {4} and {5} in the forward direction and other is via
frame {0}, the base, in the reverse direction. The use of these two paths to get the

solutions is discussed below.

Path 1 frame {3} — frame {4} — frame {5} — frame {6}

Along this path the transformation 3T6 can be obtained as

(4.122)

In Example 3.8, the transformation matrices °T,, *T’, and °T; were obtained
in terms of 6, s, and 6, respectively. On multiplying these matrices,

GG = 5% . ~CalisSe = $0Gic~CySs
§iCC, # 6,5, =8,Ci8: ~C,C; =8,S,
SiCs ~ 845 o7
0 0 0

3T6 -

_LGS4SS
L¢Cs + Ly
1

(4.123)

Path 2 frame {3} — frame {2} — frame {1} — frame {0} — frame {6}
This is a path via the base. The tool frame is defined with respect to the base and
hence, it can be reached from frame {3} traversing the links of the arm. Thus,

3 2 1 0
Gy P R o e e
It is known that “'T; = (T,_,)™" and °T¢ = T hence
-1 -1 =)
T=(’%) (%) ("h) T

(4.124)

Since 6,, 6,, and d; arec known, the matrices ’T,, 'T, and T, and their ;nvcrse
can be computed. Substituting these values and multiplying the matrices, T4 can

be computed. Let it be denoted as
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N2 h3 ny e
To=|™ 2 (4.125)
By omyony
N RS RS O
Since matrices in Eq. (4.123) and (4.125) represent the same point, the arm

point, 6y, 65, B can be found by equating the corresponding elements of matrices.
First, for 65, the elements in row 3 are equated to give three equations as:

§55Ce = 1y : (4.126)
Cs = ry (4.128)

Squaring }Eqs. (4.126) and (4.127), adding and dividing the result by
Eq. (4.128) gives solution for 6; as

65 = Atan2(+y (2 +12), ny) (4.129)
Next, joint angle 6 is obtained by equating the elements (2, 4) and (1, 4) as
—LeS4Ss =14 (4.131)

Solving for 6, from Egs. (4.130) and (4.131) gives

6, = Atanz(@‘—, ki (4.132)
S5 Ss
Note that since Ss is a variable and may have more than one value, it is going
to influence solution of 6,. Finally, to solve for 6, Eqs. (4.127) is divided by
Eq. (4.126) to give

0 = Atan2[v——?r3i, f&) (4.133)
S5 Ss

Thus, expressions for all the six joint displacements of 6-DOF manipulator are
obtained as explicit functions of the desired position and orientation of end-
effector. The values of joint displacements can be determined from these functions
for the desired end-effector location data. Note that the inverse kinematics
solutions could have been obtained by following alternate approaches. The issues
of existence and multiplicity of solutions are discussed next.

Existence of Solutions

A close examination of the expressions of the joint variables reveals that the
solutions to the inverse kinematics problem of the given 6-DOF arm exist only if
the following conditions are satisfied:

(i) The term under the square root in Eq. (4.110) is non-negative, that is,

[(d, - Lga,)? +(d, — Lga,)* +(d, - Lga,)* = 13120  (4.134)
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(ii) Similarly, the term under the square root in Eq. (4.111), is nonnegatiy
that is, ' e,
[(d, - Lga,)* +(d, - Lea,)? = 13120 (4.135)

The above conditions are clearly geometric constraints on the dimensions of
the links of the manipulator.

There are two ways to look at these. One, for given link dimensions (L, and[ )
the end-effector will not be able to attain the desired position (d,, d,, d )'anﬁd
orientation (a,, ay, @,) if the above conditions are not satisfied, and scconzd, the
conditions can be used to design link dimensions L, and Lg for the desireq
workspace.

Note that, if condition (ii) is satisfied, condition (i) is automatically satisfied
Also, note that here it is assumed that full 360° of rotation for all revolute jointg
and limitless translations of the prismatic joint are possible. But, due ty
mechanical constraints, joint motions are restricted and solutions exist only if, in
addition to satisfying the conditions given above, each of the joint variables takes
a value that lies within the range of motion allowed for that joint,

Multiplicity of Solutions

Equation (4.112) gives two solutions of 6, due to the presence of the square root.
Since 6, depends on 6, (Eq. (4.120)), there is one value of 6, for each value of 6,.
Similarly, from Eq. (4.129), there are two solutions for 65 and hence, it gives one -
set of solutions for 6, and 6, for each value of 6s. ;
Thus, the number of solutions to the inverse kinematics problem of the given
6-DOF-manipulator arm is four. | | " |

Example 4.7 Determination of joint variables for a 4-DOF RPPR
manipulator ' :

For a 4-DOF, RPPR manipulator, the joint-link transformation matrices, with
joint variables 6, d,, d3 and 6, are
Si1hiC
0: 10
0 0

1 0 0 0]
00 1 0
0 -1 0 d,
0 0 0 I
100 5
01" 0“0
040 1.:d
000 1

L i |
i

Scanned by CamScanner

Y18 = (4.136)

(e o B (e
- o O
1

'T,(6,) = (4.137)




The Inverse Kinematics @]

Cr1 _S4 0 0
St Sqit €y rui 4 B
Ty(6y) = 4 (4.139
2 "le o 1 4 1 (4:139)
10,0 w0 Qi)

If the tool configuration matrix at a given instant is as given below, obtain the
magnitude of each joint variable,

(-0250  0.433  -0.866 .—89.10
7. —| 0433 -0750 -0.500 -45.67
=

-0.866 ~0.500  0.000  50.00 i
Y 0 0 1
Solution - The kinematic model of the manipulator will be
OTlezszjTti:TE : : @141)
Substituting from Egs. (4.136) — (4.140) gives
¢ =8 0 0L 0 0 o1 0 0 57C, =S, 0 0]
$ G 0 0fo 0 1 0fo 1 0 S G 10| o
0 0 1.0/0.~1.0 40 0.1 /.01 .0..1 0] E
[0 % 0 £0u 100000 1) 0060 0 of 0xii 0 i
(4.142)
or .
[CCy. —C\Sy =8 —d3S+5C ] .[-0250 0.433 -0.866 —89.10]
SC; =85S, € dyC+55' | | 0433 -0.750 -0.500 -45.67
g =, 0 d, “1-0866 -0.500 0.000 50.00
50 7o 0 1 ||l o 0 . 0 1
(4.143)

The solunons for joint- varlable‘; are found by using the direct approach,
guideline (a)—(d). The solution for first joint variable 6, is obtained by comparmv
elements (1, 3) and (2, 3)

—S, =—sin 6, =-0.866 (4.144)
C,=cos 0,=-0.5
or 8, = Atan2(0.866, —0.5) = — 60° (that is: 0, = Atan2 (-a,, a,)) (4.145)
The solution for second variable d, is obtained from element (3, 4) as:
d, =50 (thatis : dy =d,) (4.146)

Similarly, the third joint variable d is obtained from elements (1, 4) and
elements (2, 4) by squaring, adding and simplifying
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or - dy=100 (4.148)
Note that d; can not be negative. The fourth joint variable 6, is computed frop
elements (3, 1) and (3, 2) as

9, = Atan2(0.866, 0.5) = 60° (thatis: 8, = Atan2(-n,, —0,) ~ (4.149)

The given end-effector position and orientation, T'; will be achieved by settin
the joint variable vector to , g

g=[-60° 50 100 60°] (4.150)

4.1 For the two link planar manipulator in Fig. 4.3(a) the first link as is twice
as long as the second link (L; = 2L,). Sketch the reachable workspace of
the manipulator if the joint range limits are |

0«8y <1707,
—90° < @, <110°.

4.2 Sketch the approximate reachable workspace of the tip of a two-link
planar arm with revolute joints. For this arm the first link is thrice as long
as the second link, that is, L, = 3L, and the joint limits are 30° < 6, < 180°
and —100° < 6, < 160°.

4.3 Sketch the approximate reachable workspace and the dexterous workspace
of the 3-DOF planar manipulator shown in Fig. 4.5.

4.4 Show that for a 3R planar manipulator having link lengths asL,, L, and L,
with (L, + L,) > L3, the RWS-is a circle with radius rpys = (L + Ly + L)
and DWS is a circle with radius rpys = (Ly + Ly — L3).

4.5 Explain why closed form analytical solutions are preferred over numerical
iterative solutions.

4.6 Discuss the existence of multiple solutions for Example 4.1.

4.7 For a three-link planar manipulator (2-DOF for position and 1-DOF for
orientation) two solutions are possible for a given position and orientation,
as discussed in Section 4.3.2. If one more degree of freedom is added such
that the manipulator is still planar, how many solutions will be possible
for a given position and orientation when the added joint 1s

(a) revolute.
(b) prismatic.
4.8 How many solutions are possible, assuming no joint range limits for the
following 3-DOF arm configuration?
(a) PPP manipulator shown in Fig. E4.8.
(b) RPP manipulator shown in Fig. 3.13.
(¢c) RRP manipulator shown in Fig. 4.7.
(d) RRR manipulator shown in Fig. 3.15.

(4.151)

4
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Fig. E4.8 A three degree of freedom ppp configuration
4.9 For the two degree of freedom

planar RP configuration arm discussed in
Example 3.1, how many soluti

. . ‘ ons can be found for a given position and
oncntatlo'n. What will be the number of solutions if following alterations
are made in the manipulator configuration?

(a) Add one revolute joint after the prismatic joint.
(b) Add one revolute joint before the prismatic joint.
(c) Add one degree of freedom (IR) wrist.
In each case, the manipulator remains planar.
4.10 For the 2-DOF manipulator shown in Fig. 3.11 determine the solution for
all joint displacements q for a given tool point position and orientation.

4.11 Obtain the inverse kinematics solution for the 3-DOF planar manipulator
shown in Fig. 4.5.

4.12 Workout Example 4.1 without using inverse transform approach.
4.13 Obtain the closed form solutions for the Joint displacements of the
cylindrical configuration arm described in Exercise 3.2.

4.14 For the manipulator arm consisting of 3-DOF described in Exercise 3.6,
obtain the inverse kinematics solutions..

4.15 Obtain the inverse kinematics model for the 3-DOF .articulated arm
discussed in Example 3.3.

4.16 For the 3-DOF-RPY wrist shown in Fig. 3.18, obtain the conditions of
singularities. :

4.17 For the 3-DOF arm shown in Fig. E4.17, determine the forward kinematic
model and, there from, obtain the general solution for inverse dinematics.

= .

l ;
Fig. E4.17 A three degree of freedom manipulator arm
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4.18 For the 4-DOF manipulator shown in Fig. E4.18 determine the joi
displacements required for the tool point position and orientation giVenlh
the following transformation matrix. The dimensions are shown i, th
figure. 8

Ei?& Robotics and Control

C 0.5 -0866 0 -84
0866 -0.5 0 -485

ol

AN : Tool point | ~
|/ el he
g !

TR AN

=1y 0 -1 105 .15
0 0 0 1 | )
< 60 —» e T
| gl
__________ —— I' 1‘
e e T 40
| 1 A
| d
500 | |m
|

Note: Not to scale and all dimension in mm

Fig. E4.18 A 4-DOF manipulator

4.19 For a 5-DOF, RRR-RR articulated configuration manipulator shown in
Fig. E3.14 obtain the inverse kinematics model.

4.20 Consider the 6-DOF manipulator in Exercise 3.18; find solutions for all
the joint variables in terms of end-effector position and orientation by
analytical method and inverse transform method.

4.21 For the SCARA robot discussed in Example 3.6, end-effector
configuration (orientation and position) has been calculated in Exercise
3.13. Taking this as the desired end-effector configuration compute the
joint displacement vector.

4.22 Consider the two-link planar manipulator (see Fig. 3.11) with its end-
effector located at (4, 0). If the length of each link is 2 units, determine the
values of the joint variables (8,, 6,) using transformation matrices.

4.23 For the 3-DOF manipulator in Fig. E3.11, is it possible to find inverse
kinematics solutions using analytical approach? Justify your answer.
Determine the solutions for all joint variables.

4.24 Find the general inverse kinematics solutions for the 3-DOF Euler wrist,

see Exercise 3.5.
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4.25 The joint-link parameters of a 6-DOF freedom manipulator are described

in Table E4él7a Find the inverse kinematics solutions for all the joint
3“.3165 q—[ 1 B 05 6, 6, 65] . Assume that the position and
orientation flf lpe end-effector with respect to the base coordinates “Tg is
known and is given by :

n, i o i)
n 0 a d
e L (4.153)
: 0, a, dz
L0 00 a4,

1 d,
2 a, 0 0 6, 6,
3 as 0 0 83 33
4 a -90° 0 6, 6,
5 0 90° ds 0 0s
6 0 0 dg A B
426 Describe the workspace of a manipulator. Make a list of factors on which
the workspace, the dexterous and reachable workspace, of a given
manipulator depends.
427 Solutions to inverse kinematics problem are generally difficult. Explain
why.
428 Explain the factors on which the number of solutions to given inverse

4.29

4.30

4.31

4.32

. D. Baker and C. Wampler,

kinematics model depend.
How are the feasible solutions determined? What parameters have control

on the number of feasible solutions to the given inverse kinematics

problem?
Is it always possible to find analytical solutions to the inverse kinematics

problem? Give a situation when the analytical solution to inverse

kinematics problem cannot be found.
What are closed form solutions to inverse kinematics problem? Explain

the methods for obtaining closed form solutions.
Why closed form solutions are preferred over numerical, iterative or other

forms of solutions to the inverse kinematics problem?
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